Angioplasty of Flow-Limiting Stenosis Reduces Aortic and Brachial Blood Pressure in Patients With Peripheral Artery Disease

Lucas Busch, Yvonne Heinen, Manuel Stern, Georg Wolff, Göksen Özaslan, Konstantina Tzetou, Roberto Sansone, Christian Heiss, Malte Kelm, Lucas Busch, Yvonne Heinen, Manuel Stern, Georg Wolff, Göksen Özaslan, Konstantina Tzetou, Roberto Sansone, Christian Heiss, Malte Kelm

Abstract

Background Arterial hypertension affects cardiovascular outcome in patients with peripheral artery disease (PAD). We hypothesized that angioplasty of peripheral arterial stenoses decreases aortic (aBP) and brachial blood pressure (bBP). Methods and Results In an index cohort (n=30), we simultaneously measured aBP, bBP, augmentation index (AIx), and aortic pulse wave velocity (PWV) before and after angioplasty of the iliac and femoropopliteal arteries; diagnostic angiography served as a control. In an all-comer registry cohort (n=381), we prospectively measured bBP in patients scheduled for angioplasty of the iliac, femoral, and crural arteries or diagnostic angiography. Systolic aBP decreased after iliac (Δ-25 mmHg; 95% CI, -30 to -20; P<0.0001) and femoropopliteal angioplasty (Δ-12 mmHg; 95% CI, -17 to -5; P<0.0001) as compared with diagnostic angiography. Diastolic aBP decreased after iliac (Δ-9 mmHg; 95% CI, -13 to -1; P=0.01) but not femoropopliteal angioplasty. In parallel, AIx significantly dropped, whereas PWV remained stable. In the registry cohort, systolic bBP decreased after angioplasty of the iliac (Δ-17 mmHg; 95% CI, -31 to -8; P=0.0005) and femoropopliteal arteries (Δ-10 mmHg; 95% CI, -23 to -1; P=0.04) but not the crural arteries, as compared with diagnostic angiography. Diastolic bBP decreased after iliac (Δ-10 mmHg; 95% CI, -17 to -2; P=0.01) and femoropopliteal angioplasty (Δ-9 mmHg; 95% CI, -15 to -1; P=0.04). Multivariate analysis identified baseline systolic bBP and site of lesion as determinants of systolic bBP drop after endovascular treatment. Conclusions Angioplasty of flow-limiting stenoses in patients with peripheral artery disease lowers aortic and brachial blood pressure with more pronounced effects at more proximal lesion sites and elevated baseline systolic blood pressure. These data indicate a role of endovascular treatment to acutely optimize blood pressure in patients with peripheral artery disease. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02728479.

Keywords: arterial hypertension; augmentation index; blood pressure; peripheral artery disease; pulse wave velocity.

Conflict of interest statement

None.

Figures

Figure 1. CONSORT diagram of the prospective…
Figure 1. CONSORT diagram of the prospective Duesseldorf percutaneous transluminal angioplasty study.
A, Index cohort with 30 patients. Clinical evaluations including office measurement of brachial blood pressure (bBP), ankle‐brachial index (ABI), heart rate (HR), and vascular assessment at baseline 1 day before and 1 day after intervention. Intraprocedural invasive serial hemodynamic measurement of segmental aortic blood pressure (aBP), augmentation index (AIx), pulse wave velocity (PWV), and bBP before and after angioplasty or diagnostic angiography. B, Registry cohort with office bBP recordings 1 day before and 1 day after angioplasty and angiography. Cath lab indicates catheterization laboratory; and Fempop., femoropopliteal.
Figure 2. Segmental, serial, invasive aortic blood…
Figure 2. Segmental, serial, invasive aortic blood pressure (aBP) measurements before and after endovascular treatment measured from proximal (A) to distal (D) sites of the aorta.
Bars indicate standard error of the mean. *P<0.05 vs baseline (paired t test). ■ indicates iliac angioplasty (n=15); ▲, femoropopliteal (fempop.) angioplasty (n=10); •, diagnostic angiography (n=5).
Figure 3. Physicomechanical properties of the aorta.
Figure 3. Physicomechanical properties of the aorta.
A, Aortic pulse wave velocity (PWV) before (black bars) and after (white bars) peripheral angioplasty of the iliac (n=15) femoropopliteal (fempop.) (n=10) arteries and during diagnostic angiography (n=5). B, Timing of the reflected pressure wave (T1) to the aorta before (black bars) and after (white bars) angioplasty or diagnostic angiography. C, Augmentation index (AIx) before (black bars) and after (white bars) elective angioplasty and diagnostic angiography. Bars indicate mean and standard error of the mean. *P<0.05 vs baseline (paired t test). %, &, and #, P<0.05 (1‐way ANOVA).
Figure 4. Relation of intraprocedural changes in…
Figure 4. Relation of intraprocedural changes in aortic blood pressure (aBP) and brachial blood pressure (bBP) before and after angioplasty.
A, Correlation of angioplasty‐associated changes in invasively measured systolic aBP (Δ systolic aBP) and systolic bBP (Δ systolic bBP) determined via sphygmometry. B, Correlation of changes in diastolic aBP (Δ diastolic aBP) and diastolic bBP (Δ diastolic bBP). ■ indicates iliac angioplasty (n=15); ▲, femoropopliteal angioplasty (n=10); and •, diagnostic angiography (n=5).
Figure 5. Endovascular treatment of iliacal and…
Figure 5. Endovascular treatment of iliacal and femoral flow‐limiting stenosis is associated with selective improvement/restitution of peripheral blood flow into the treated leg and reduction in brachial blood pressure (bBP) in the index cohort.
A, Heart rate (HR) measured at baseline 1 day before (black bars) and 1 day after (white bars) angioplasty of the iliac (n=15) and femoropopliteal (fempop.) (n=10) arteries, and after diagnostic angiography (n=5). B, Systolic bBP and diastolic bBP 1 day before (black bars) and 1 day after angioplasty (white bars) and diagnostic angiography. C, Common femoral artery (CFA) blood flow in the untreated leg 1 day before (black bars) and 1 day after (white bars) angioplasty of the contralateral leg. D, Target leg CFA blood flow 1 day before (black bars) and 1 day after (white bars) angioplasty and diagnostic angiography. Bars are mean and error bars are standard error of the mean. *P<0.05 vs baseline (paired t test). §, #, and &, P<0.05 (1‐way ANOVA).
Figure 6. Change in brachial blood pressure…
Figure 6. Change in brachial blood pressure (bBP) following angioplasty in the registry cohort.
Office systolic bBP (A) and diastolic bBP (B) at baseline as measured on the day before (black bars) and on the day after (white bars) elective angioplasty of iliac (n=119), femoropopliteal (fempop.) (n=208), and below‐the‐knee (BTK) (n=39) arteries. Bars indicate mean standard error of the mean. *P<0.05 vs baseline (paired t test). & and #, P<0.05 (1‐way ANOVA).

References

    1. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, ESC Scientific Document Group , et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–3104. DOI: 10.1093/eurheartj/ehy339.
    1. O'Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, Rao‐Melacini P, Zhang X, Pais P, Agapay S, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case‐control study. Lancet. 2016;388:761–775. DOI: 10.1016/S0140-6736(16)30506-2.
    1. Chow CK, Teo KK, Rangarajan S, Islam S, Gupta R, Avezum A, Bahonar A, Chifamba J, Dagenais G, Diaz R, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high‐, middle‐, and low‐income countries. JAMA. 2013;310:959–968. DOI: 10.1001/jama.2013.184182.
    1. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective SC, Prospective Studies Collaboration . Age‐specific relevance of usual blood pressure to vascular mortality: a meta‐analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–1913. DOI: 10.1016/s0140-6736(02)11911-8.
    1. Gerhard‐Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, Fleisher LA, Fowkes FGR, Hamburg NM, Kinlay S, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;69:e71–e126. DOI: 10.1016/j.jacc.2016.11.007.
    1. Aboyans V, Ricco J‐B, Bartelink M‐L, Björck M, Brodmann M, Cohnert T, Collet J‐P, Czerny M, De Carlo M, Debus S, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018;39:763–816. DOI: 10.1093/eurheartj/ehx095.
    1. Bhatt DL, Steg PG, Ohman EM, Hirsch AT, Ikeda Y, Mas JL, Goto S, Liau CS, Richard AJ, Rother J, et al. International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA. 2006;295:180–189. DOI: 10.1001/jama.295.2.180.
    1. Ya'qoub L, Peri‐Okonny P, Wang J, Patel KK, Stone N, Smolderen K. Blood pressure management in patients with symptomatic peripheral artery disease: insights from the portrait registry. Eur Heart J Qual Care Clin Outcomes. 2019;5:79–81. DOI: 10.1093/ehjqcco/qcy035.
    1. Safar ME, Priollet P, Luizy F, Mourad JJ, Cacoub P, Levesque H, Benelbaz J, Michon P, Herrmann MA, Blacher J. Peripheral arterial disease and isolated systolic hypertension: the ATTEST study. J Hum Hypertens. 2009;23:182–187. DOI: 10.1038/jhh.2008.121.
    1. Heiss C, Pitcher A, Belch JJF, De Carlo M, Reinecke H, Baumgartner I, Mazzolai L, Aboyans V. The year in cardiology: aorta and peripheral circulation. Eur Heart J. 2020;41:501–508b. DOI: 10.1093/eurheartj/ehz939.
    1. Chirinos JA, Segers P, Hughes T, Townsend R. Large‐artery stiffness in health and disease: jacc state‐of‐the‐art review. J Am Coll Cardiol. 2019;74:1237–1263. DOI: 10.1016/j.jacc.2019.07.012.
    1. Heinen Y, Stegemann E, Sansone R, Benedens K, Wagstaff R, Balzer J, Rassaf T, Lauer T, Kelm M, Heiss C. Local association between endothelial dysfunction and intimal hyperplasia: relevance in peripheral artery disease. J Am Heart Assoc. 2015;4:e001472. DOI: 10.1161/JAHA.114.001472.
    1. Horvath IG, Nemeth A, Lenkey Z, Alessandri N, Tufano F, Kis P, Gaszner B, Cziraki A. Invasive validation of a new oscillometric device (arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens. 2010;28:2068–2075. DOI: 10.1097/HJH.0b013e32833c8a1a.
    1. Anand SS, Caron F, Eikelboom JW, Bosch J, Dyal L, Aboyans V, Abola MT, Branch KRH, Keltai K, Bhatt DL, et al. Major adverse limb events and mortality in patients with peripheral artery disease: the compass trial. J Am Coll Cardiol. 2018;71:2306–2315. DOI: 10.1016/j.jacc.2018.03.008.
    1. Bonaca MP, Bauersachs RM, Anand SS, Debus ES, Nehler MR, Patel MR, Fanelli F, Capell WH, Diao L, Jaeger N, et al. Rivaroxaban in peripheral artery disease after revascularization. N Engl J Med. 2020;382:1994–2004. DOI: 10.1056/NEJMoa2000052.
    1. Reinecke H, Unrath M, Freisinger E, Bunzemeier H, Meyborg M, Luders F, Gebauer K, Roeder N, Berger K, Malyar NM. Peripheral arterial disease and critical limb ischaemia: still poor outcomes and lack of guideline adherence. Eur Heart J. 2015;36:932–938. DOI: 10.1093/eurheartj/ehv006.
    1. Smolderen KG, Gosch K, Patel M, Jones WS, Hirsch AT, Beltrame J, Fitridge R, Shishehbor MH, Denollet J, Vriens P, et al. PORTRAIT (Patient‐Centered Outcomes Related to Treatment Practices in Peripheral Arterial Disease: Investigating Trajectories): overview of design and rationale of an international prospective peripheral arterial disease study. Circ Cardiovasc Qual Outcomes. 2018;11:e003860. DOI: 10.1161/CIRCOUTCOMES.117.003860.
    1. Brunstrom M, Carlberg B. Association of blood pressure lowering with mortality and cardiovascular disease across blood pressure levels: a systematic review and meta‐analysis. JAMA Intern Med. 2018;178:28–36. DOI: 10.1001/jamainternmed.2017.6015.
    1. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, Chalmers J, Rodgers A, Rahimi K. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta‐analysis. Lancet. 2016;387:957–967. DOI: 10.1016/S0140-6736(15)01225-8.
    1. Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation. 1980;62:105–116. DOI: 10.1161/01.CIR.62.1.105.
    1. John Baksi A, Davies JE, Hadjiloizou N, Baruah R, Unsworth B, Foale RA, Korolkova O, Siggers JH, Francis DP, Mayet J, et al. Attenuation of reflected waves in man during retrograde propagation from femoral artery to proximal aorta. Int J Cardiol. 2016;202:441–445. DOI: 10.1016/j.ijcard.2015.09.064.
    1. Wilkinson IB, MacCallum H, Hupperetz PC, van Thoor CJ, Cockcroft JR, Webb DJ. Changes in the derived central pressure waveform and pulse pressure in response to angiotensin ii and noradrenaline in man. J Physiol. 2001;530:541–550. DOI: 10.1111/j.1469-7793.2001.0541k.x.
    1. Guyton AC. Systemic circulation. Textbook of Medical Physiology. 1986;218–229.
    1. Tanaka H, Dinenno FA, Hunt BE, Jones PP, DeSouza CA, Seals DR. Hemodynamic sequelae of age‐related increases in arterial stiffness in healthy women. The American journal of cardiology. 1998;82:1152–1155. DOI: 10.1016/S0002-9149(98)00578-5.
    1. Guyton AC. Blood pressure control–special role of the kidneys and body fluids. Science. 1991;252:1813–1816. DOI: 10.1126/science.2063193.
    1. Jacomella V, Shenoy A, Mosimann K, Kohler MK, Amann‐Vesti B, Husmann M. The impact of endovascular lower‐limb revascularisation on the aortic augmentation index in patients with peripheral arterial disease. Eur J Vasc Endovasc Surg. 2013;45:497–501. DOI: 10.1016/j.ejvs.2013.01.026.

Source: PubMed

3
Sottoscrivi