The Wiring of Intelligence

Alexander O Savi, Maarten Marsman, Han L J van der Maas, Gunter K J Maris, Alexander O Savi, Maarten Marsman, Han L J van der Maas, Gunter K J Maris

Abstract

The positive manifold of intelligence has fascinated generations of scholars in human ability. In the past century, various formal explanations have been proposed, including the dominant g factor, the revived sampling theory, and the recent multiplier effect model and mutualism model. In this article, we propose a novel idiographic explanation. We formally conceptualize intelligence as evolving networks in which new facts and procedures are wired together during development. The static model, an extension of the Fortuin-Kasteleyn model, provides a parsimonious explanation of the positive manifold and intelligence's hierarchical factor structure. We show how it can explain the Matthew effect across developmental stages. Finally, we introduce a method for studying growth dynamics. Our truly idiographic approach offers a new view on a century-old construct and ultimately allows the fields of human ability and human learning to coalesce.

Keywords: child development; cognition; idiographic science; individual differences; intelligence; network model; quantitative methodology.

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared that there were no conflicts of interest with respect to the authorship or the publication of this article.

Figures

Fig. 1.
Fig. 1.
Four explanations of the positive manifold (simplified). Circles represent unobserved entities, whereas boxes represent observed entities. Dashed lines represent relations that have an influence over time. g = general intelligence, x = cognitive test, c = basic cognitive process (of person j at time t), G = genetic endowment, m = measured IQ of person j at time t, e = environment of person j at time t, K = genetic and environmental factors.
Fig. 2.
Fig. 2.
Pólya urn demonstrations of (a) the Matthew effect and (b) the compensation effect. Starting with an urn that contains a white marble and a black marble, in each trial the drawn marble is replaced with two or three marbles of the same color, depending on the desired effect. The figures show the development of the proportion of marbles for 50 independent urns.
Fig. 3.
Fig. 3.
Heritability estimates of 200 identical twins in Pólya’s urn. Initial urn configurations are sampled such that each urn contains black and white marbles. The standard growth mechanism is used for all twins: One marble is randomly drawn from the urn and replaced by two marbles of the same color. This process is repeated until the urn contains 800 marbles. At each developmental step (x-axis), the heritability is calculated (y-axis) as the squared correlation between the proportions of white marbles in current and past developmental steps of a twin pair, averaged over all twin pairs. This process is repeated for different initial urn sizes (line type and line color).
Fig. 4.
Fig. 4.
Two instances of a Pólya’s urn network. Both networks started with a single black node and a single white node (t = 0). In addition, the networks share an identical growth mechanism: A new node is randomly connected to one of the existing nodes and copies its color. The numbers show the time points at which the nodes were added.
Fig. 5.
Fig. 5.
Two instances of the Fortuin and Kasteleyn (1972) model. The cognitive networks of (a) Cornelius and (b) Pete consist of 96 nodes, equally distributed across four domains (represented by nodes of different shapes). Cornelius has 25 pieces of obtained knowledge (white nodes), and Pete has 65 pieces of obtained knowledge. Networks were generated with θW=.07, θB=.005, and µ =.03; parameters are introduced in the text of the article.
Fig. 6.
Fig. 6.
Heat map of the correlational structure of the nodes of the Fortuin and Kasteleyn (1972) model. As analogues to Spearman’s very first observation of the positive manifold in the correlational structure of his cognitive tests, the exclusively positive patches illustrate the positive manifold as a constraining property of the Fortuin–Kasteleyn model. In addition, the hierarchical structure of intelligence is clearly reflected in the block structure. Networks were generated with θW=.07, θB=.005, and µ =.03. Corr = correlation.
Fig. 7.
Fig. 7.
The Matthew effect when the Gibbs sampler—used to sample a network from the model—is decelerated. The graph in (a) shows the fan spread that characterizes the Matthew effect. The graph in (b) shows the variance in obtained pieces of knowledge across networks. The graph in (c) shows the average variance in obtained pieces of knowledge across subsequent states of individual networks. The dashed line indicates the smoothed variance; the solid line indicates the actual variance.
Fig. 8.
Fig. 8.
The Matthew effect and bifurcation in developing networks. Points represent the number of obtained pieces of knowledge (y-axis) across networks of different sizes (x-axis). Each point represents an independent observation. The gray rectangles show the parts of the figures that overlap.
Fig. 9.
Fig. 9.
Heat maps of the correlational structure of cognitive networks with 40, 80, 120, or 160 nodes (note the scale of each heat map) across four different domains. Each heat map is based on 1,000 networks. The exclusively positive patches illustrate the positive manifold, and the block structures illustrate the hierarchical structure. With networks increasing in size, the positive manifold increases too. Corr = correlation.

References

    1. Ackerman P. L., Lohman D. F. (2003). Education and g. In Nyborg H. (Ed.), The scientific study of general intelligence (pp. 275–292). Amsterdam, the Netherlands: Elsevier BV.
    1. Bartholomew D. J. (2004). Measuring intelligence. New York, NY: Cambridge University Press.
    1. Bartholomew D. J., Allerhand M., Deary I. J. (2013). Measuring mental capacity: Thomsons bonds model and Spearmans g-model compared. Intelligence, 41, 222–233. doi:10.1016/j.intell.2013.03.007
    1. Bartholomew D. J., Deary I. J., Lawn M. (2009). The origin of factor scores: Spearman, Thomson and Bartlett. British Journal of Mathematical and Statistical Psychology, 62, 569–582. doi:10.1348/000711008x365676
    1. Bartlett F. C. (1932). Remembering: A study in experimental and social psychology. Retrieved from
    1. Bast J., Reitsma P. (1998). Analyzing the development of individual differences in terms of Matthew effects in reading: Results from a Dutch longitudinal study. Developmental Psychology, 34, 1373–1399. doi:10.1037/0012-1649.34.6.1373
    1. Bol T., de Vaan M., van de Rijt A. (2018). The Matthew effect in science funding. Proceedings of the National Academy of Sciences, USA, 115, 4887–4890. doi:10.1073/pnas.1719557115
    1. Borsboom D. (2017). A network theory of mental disorders. World Psychiatry, 16, 5–13. doi:10.1002/wps.20375
    1. Borsboom D., Kievit R. A., Cervone D., Hood S. B. (2009). The two disciplines of scientific psychology, or: The disunity of psychology as a working hypothesis. In Valsiner J., Molenaar P. C. M., Lyra M. C. D. P., Chaudhary N. (Eds.), Dynamic process methodology in the social and developmental sciences (pp. 67–97). New York, NY: Springer.
    1. Box G. E. P. (1979). Robustness in the strategy of scientific model building. In Launer R. L., Wilkinson G. N. (Eds.), Robustness in statistics (pp. 201–236). New York, NY: Academic Press.
    1. Boyle E. A., Li Y. I., Pritchard J. K. (2017). An expanded view of complex traits: From polygenic to omnigenic. Cell, 169, 1177–1186. doi:10.1016/j.cell.2017.05.038
    1. Brown R. E. (2016). Hebb and Cattell: The genesis of the theory of fluid and crystallized intelligence. Frontiers in Human Neuroscience, 10, Article 606. doi:10.3389/fnhum.2016.00606
    1. Carroll J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge, England: Cambridge University Press.
    1. Cattell R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 1–22. doi:10.1037/h0046743
    1. Cattell R. B. (1987). Intelligence: Its structure, growth and action. Amsterdam, the Netherlands: Elsevier Science.
    1. Ceci S. J., Barnett S. M., Kanaya T. (2003). Developing childhood proclivities into adult competencies: The overlooked multiplier effect. In Sternberg R. J., Grigorenko E. L. (Eds.), The psychology of abilities, competencies, and expertise (pp. 70–92). Cambridge, England: Cambridge University Press.
    1. Chen N., Glazier J. A., Izaguirre J. A., Alber M. S. (2007). A parallel implementation of the cellular Potts model for simulation of cell-based morphogenesis. Computer Physics Communications, 176, 670–681. doi:10.1016/j.cpc.2007.03.007
    1. Cioletti L., Vila R. (2015). Graphical representations for Ising and Potts models in general external fields. Journal of Statistical Physics, 162, 81–122. doi:10.1007/s10955-015-1396-5
    1. Conway A. R. A., Kovacs K. (2015). New and emerging models of human intelligence. Wiley Interdisciplinary Reviews: Cognitive Science, 6, 419–426. doi:10.1002/wcs.1356
    1. Cronbach L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12, 671–684. doi:10.1037/h0043943
    1. Dalege J., Borsboom D., van Harreveld F., Waldorp L. J., van der Maas H. L. J. (2017). Network structure explains the impact of attitudes on voting decisions. Scientific Reports, 7, Article 4909. doi:10.1038/s41598-017-05048-y
    1. Dehaene S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970–974. doi:10.1126/science.284.5416.970
    1. Dickens W. T. (2007). What is g? Retrieved from
    1. Dickens W. T., Flynn J. R. (2001). Heritability estimates versus large environmental effects: The IQ paradox resolved. Psychological Review, 108, 346–369. doi:10.1037/0033-295x.108.2.346
    1. Dickens W. T., Flynn J. R. (2002). The IQ paradox is still resolved: Reply to Loehlin (2002) and Rowe and Rodgers (2002). Psychological Review, 109, 764–771. doi:10.1037/0033-295x.109.4.764
    1. Duijn P. A. C., Kashirin V., Sloot P. M. A. (2014). The relative ineffectiveness of criminal network disruption. Scientific Reports, 4, Article 4238. doi:10.1038/srep04238
    1. Ebbinghaus H. (1913). Memory; A contribution to experimental psychology. Teachers College, Columbia University; Retrieved from
    1. Eggenberger F., Pólya G. (1923). Über die statistik verketteter vorgänge [On the statistics of linked processes]. Zeitschrift für Angewandte Mathematik und Mechanik, 3, 279–289. doi:10.1002/zamm.19230030407
    1. Epskamp S., Cramer A. O. J., Waldorp L. J., Schmittmann V. D., Borsboom D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1–18. doi:10.18637/jss.v048.i04
    1. Epskamp S., Maris G., Waldorp L. J., Borsboom D. (2018). Network psychometrics. In Irwing P., Booth T., Hughes D. J. (Eds.). The Wiley handbook of psychometric testing (pp. 953–986). Hoboken, NJ: Wiley.
    1. Ferguson G. A. (1954). On learning and human ability. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 8, 95–112. doi:10.1037/h0083598
    1. Ferrer E., McArdle J. J. (2004). An experimental analysis of dynamic hypotheses about cognitive abilities and achievement from childhood to early adulthood. Developmental Psychology, 40, 935–952. doi:10.1037/0012-1649.40.6.935
    1. Fill J. A., Huber M. (2000). The randomness recycler: A new technique for perfect sampling. In Proceedings 41st annual symposium on foundations of computer science. IEEE Computer Society. doi:10.1109/sfcs.2000.892138
    1. Fodor J. A. (1983). The modularity of mind. MIT Press; Retrieved from
    1. Fortuin C. M., Kasteleyn P. W. (1972). On the random-cluster model. Physica, 57, 536–564. doi:10.1016/0031-8914(72)90045-6
    1. Fortuin C. M., Kasteleyn P. W., Ginibre J. (1971). Correlation inequalities on some partially ordered sets. Communications in Mathematical Physics, 22, 89–103. doi:10.1007/bf01651330
    1. Freund J., Brandmaier A. M., Lewejohann L., Kirste I., Kritzler M., Kruger A., . . . Kempermann G. (2013). Emergence of individuality in genetically identical mice. Science, 340, 756–759. doi:10.1126/science.1235294
    1. Geary D. C. (2018). Efficiency of mitochondrial functioning as the fundamental biological mechanism of general intelligence (g). Psychological Review, 125, 1028–1050. doi:10.1037/rev0000124
    1. Graner F., Glazier J. A. (1992). Simulation of biological cell sorting using a two-dimensional extended Potts model. Physical Review Letters, 69, 2013–2016. doi:10.1103/physrevlett.69.2013
    1. Greenwood M., Yule G. U. (1920). An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents. Journal of the Royal Statistical Society, 83, 255–279. doi:10.2307/2341080
    1. Grieneisen V. A., Xu J., Marée A. F. M., Hogeweg P., Scheres B. (2007). Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 449, 1008–1013. doi:10.1038/nature06215
    1. Grimmett G. (2006). The random-cluster model. Berlin, Germany: Springer. doi:10.1007/978-3-540-32891-9
    1. Guilford J. P. (1967). The nature of human intelligence. New York, NY: McGraw-Hill.
    1. Guilford J. P. (1988). Some changes in the structure-of-intellect model. Educational and Psychological Measurement, 48, 1–4. doi:10.1177/001316448804800102
    1. Hebb D. O. (1949). The organization of behavior. Retrieved from
    1. Heckman J. J. (1981). Heterogeneity and state dependence. In Rosen S. (Ed.), Studies in labor markets (pp. 91–140). University of Chicago Press; Retrieved from
    1. Hill W. D., Arslan R. C., Xia C., Luciano M., Amador C., Navarro P., . . . Penke L. (2018). Genomic analysis of family data reveals additional genetic effects on intelligence and personality. Molecular Psychiatry, 23, 2347–2362. doi:10.1038/s41380-017-0005-1
    1. Holland P. W., Rosenbaum P. R. (1986). Conditional association and unidimensionality in monotone latent variable models. The Annals of Statistics, 14, 1523–1543. doi:10.1214/aos/1176350174
    1. Hoppe F. M. (1984). Pólya-like urns and the Ewens sampling formula. Journal of Mathematical Biology, 20, 91–94. doi:10.1007/bf00275863
    1. Horn J. L., Cattell R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57, 253–270. doi:10.1037/h0023816
    1. Ising E. (1925). Beitrag zur theorie des ferromagnetismus [Contribution to the theory of ferromagnetism]. Zeitschrift für Physik, 31, 253–258. doi:10.1007/bf02980577
    1. Jansen B. R. J., van der Maas H. L. J. (2002). The development of children’s rule use on the balance scale task. Journal of Experimental Child Psychology, 81, 383–416. doi:10.1006/jecp.2002.2664
    1. Jensen A. R. (2002). Psychometric g: Definition and substantiation. In Sternberg R. J., Grigorenko E. L. (Eds.), The general factor of intelligence: How general is it? (pp. 39-53). Mahwah, NJ: Erlbaum.
    1. Johnson M. H. (2011). Interactive specialization: A domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1, 7–21. doi:10.1016/j.dcn.2010.07.003
    1. Jung R. E., Haier R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral & Brain Sciences, 30, 135–154. doi:10.1017/s0140525x07001185
    1. Kac M. (1968). Mathematical mechanisms of phase transitions. In Chrétien M., Gross E., Deser S. (Eds.), Statistical physics: Phase transitions and superfl uidity (Vol. 1, pp. 241–305). New York, NY: Gordon and Brache Science Publishers.
    1. Kan K.-J., Ploeger A., Raijmakers M. E. J., Dolan C. V., van der Maas H. L. J. (2010). Nonlinear epigenetic variance: Review and simulations. Developmental Science, 13, 11–27. doi:10.1111/j.1467-7687.2009.00858.x
    1. Karpicke J. D., Roediger H. L. (2008). The critical importance of retrieval for learning. Science, 319, 966–968. doi:10.1126/science.1152408
    1. Kievit R. A., Lindenberger U., Goodyer I. M., Jones P. B., Fonagy P., Bullmore E. T., . . . Dolan R. J. (2017). Mutualistic coupling between vocabulary and reasoning supports cognitive development during late adolescence and early adulthood. Psychological Science, 28, 1419–1431. doi:10.1177/0956797617710785
    1. Kochmanński M., Paszkiewicz T., Wolski S. (2013). Curie–Weiss magnet—A simple model of phase transition. European Journal of Physics, 34, 1555–1573. doi:10.1088/0143-0807/34/6/1555
    1. Kovacs K., Conway A. R. A. (2016). Process overlap theory: A unified account of the general factor of intelligence. Psychological Inquiry, 27, 151–177. doi:10.1080/1047840x.2016.1153946
    1. Kovacs K., Conway A. R. A. (2019). What is IQ? Life beyond general intelligence. Current Directions in Psychological Science, 28, 189–194. doi:10.1177/0963721419827275
    1. Kroeze R., van der Veen D. C., Servaas M. N., Bastiaansen J. A., Voshaar R. C. O., Borsboom D., . . . Riese H. (2017). Personalized feedback on symptom dynamics of psychopathology: A proof-of-principle study. Journal for Person-Oriented Research, 3, 1–11. doi:10.17505/jpor.2017.01
    1. Kruis J., Maris G. (2016). Three representations of the Ising model. Scientifi c Reports, 6, Article 34175. doi:10.1038/srep34175
    1. Lee J. J., Wedow R., Okbay A., Kong E., Maghzian O., Zacher M., . . . Cesarini D. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50, 1112–1121. doi:10.1038/s41588-018-0147-3
    1. Li J. F., Lowengrub J. (2014). The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the cellular Potts model. Journal of Theoretical Biology, 343, 79–91. doi:10.1016/j.jtbi.2013.10.008
    1. Mahmoud H. (2008). Polya urn models. Chapman & Hall/CRC Texts in Statistical Science, New York, NY: Taylor & Francis. 10.1201/9781420059847
    1. Marsman M., Borsboom D., Kruis J., Epskamp S., van Bork R., Waldorp L. J., . . . Maris G. K. J. (2018). An introduction to network psychometrics: Relating Ising network models to item response theory models. Multivariate Behavioral Research, 53, 15–35. doi:10.1080/00273171.2017.1379379
    1. Marsman M., Maris G., Bechger T., Glas C. (2015). Bayesian inference for low-rank Ising networks. Scientific Reports, 5, Article 9050. doi:10.1038/srep09050
    1. Marsman M., Tanis C. C., Bechger T. M., Waldorp L. J. (in press). Network psychometrics in educational practice. Maximum likelihood estimation of the Curie-Weiss model.
    1. McArdle J. J., Ferrer-Caja E., Hamagami F., Woodcock R. W. (2002). Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Developmental Psychology, 38, 115–142. doi:10.1037/0012-1649.38.1.115
    1. McGrew K., Flanagan D. (1998). Intelligence test desk reference (ITDR): The Gf-Gc cross-battery assessment. Pearson Education. Retrieved from
    1. Merton R. K. (1968). The Matthew effect in science. Science, 159, 56–63. doi:10.1126/science.159.3810.56
    1. Molenaar P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement: Interdisciplinary Research & Perspective, 2, 201–218. doi:10.1207/s15366359mea0204_1
    1. Molenaar P. C. M., Boomsma D. I., Dolan C. V. (1993). A third source of developmental differences. Behavior Genetics, 23, 519–524. doi:10.1007/bf01068142
    1. Nisbett R. E., Aronson J., Blair C., Dickens W., Flynn J., Halpern D. F., Turkheimer E. (2012). Intelligence: New findings and theoretical developments. American Psychologist, 67, 130–159. doi:10.1037/a0026699
    1. Perc M. (2014). The Matthew effect in empirical data. Journal of the Royal Society Interface, 11. doi:10.1098/rsif.2014.0378
    1. Pietschnig J., Voracek M. (2015). One century of global IQ gains. Perspectives on Psychological Science, 10, 282–306. doi:10.1177/1745691615577701
    1. Plomin R., Deary I. J. (2015). Genetics and intelligence differences: Five special findings. Molecular Psychiatry, 20, 98–108. doi:10.1038/mp.2014.105
    1. Protopapas A., Parrila R., Simos P. G. (2014). In search of Matthew effects in reading. Journal of Learning Disabilities, 49, 499–514. doi:10.1177/0022219414559974
    1. Prusinkiewicz P., Runions A. (2012). Computational models of plant development and form. New Phytologist, 193, 549–569. doi:10.1111/j.1469-8137.2011.04009.x
    1. R Core Team. (2019). R: A language and environment for statistical computing (Version 3.6.1) [Computer software]. Retrieved from
    1. Reckase M. D. (2009). Multidimensional item response theory. New York, NY: Springer.
    1. Rivera S., Reiss A., Eckert M., Menon V. (2005). Developmental changes in mental arithmetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15, 1779–1790. doi:10.1093/cercor/bhi055
    1. Ruzgis P. (1994). Thurstone L. L. (1887. –1955). In Sternberg R. J. (Ed.), Encyclopedia of human intelligence (pp. 1081–1084). New York, NY: Macmillan.
    1. Santarnecchi E., Emmendorfer A., Pascual-Leone A. (2017). Dissecting the parieto-frontal correlates of fluid intelligence: A comprehensive ALE meta-analysis study. Intelligence, 63, 9–281. doi:10.016/j.intell.2017.04.008
    1. Sauce B., Matzel L. D. (2018). The paradox of intelligence: Heritability and malleability coexist in hidden gene-environment interplay. Psychological Bulletin, 144, 26–47. doi:10.1037/bul0000131
    1. Scarr S. (1992). Developmental theories for the 1990s: Development and individual differences. Child Development, 63, 1–19. doi:10.2307/1130897
    1. Scarr S., McCartney K. (1983). How people make their own environments: A theory of genotype – > environment effects. Child Development, 54, 424–435. doi:10.2307/1129703
    1. Schalke-Mandoux D. S. (2016). The impact of educational attainment and grade retention on the development of intelligence (Doctoral dissertation). doi:10.17169/refubium-12167
    1. Schroeders U., Schipolowski S., Zettler I., Golle J., Wilhelm O. (2016). Do the smart get smarter? Development of fluid and crystallized intelligence in 3rd grade. Intelligence, 59, 84–95. doi:10.1016/j.intell.2016.08.003
    1. Shaywitz B. A., Holford T. R., Holahan J. M., Fletcher J. M., Stuebing K. K., Francis D. J., Shaywitz S. E. (1995). A Matthew effect for IQ but not for reading: Results from a longitudinal study. Reading Research Quarterly, 30, 894–906. doi:10.2307/748203
    1. Simon H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106, 467–482. Retrieved from
    1. Spearman C. (1904). “General intelligence,” objectively determined and measured. The American Journal of Psychology, 15, 201–292. Retrieved from
    1. Spearman C. (1927). The abilities of man: Their nature and assessment. Retrieved from
    1. Spunt R. P., Adolphs R. (2017). A new look at domain specificity: Insights from social neuroscience. Nature Reviews Neuroscience, 18, 559–567. doi:10.1038/nrn.2017.76
    1. Stanovich K. E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 21, 360–407. Retrieved from
    1. Tabery J. (2007). Biometric and developmental gene–environment interactions: Looking back, moving forward. Development and Psychopathology, 19, 961–967. doi:10.1017/s0954579407000478
    1. Thomson G. H. (1916). A hierarchy without a general factor. British Journal of Psychology, 1904-1920, 8, 271–281. doi:10.1111/j.2044-8295.1916.tb00133.x
    1. Thomson G. H. (1951). The factorial analysis of human ability. Retrieved from
    1. Thorndike E. L., Bregman E. O., Cobb M. V., Woodyard E. (1926). The measurement of intelligence. New York, NY: Teachers College Bureau of Publications.
    1. Thurstone L. L. (1938). Primary mental abilities. Chicago, IL: University of Chicago Press.
    1. Tryon R. C. (1935). A theory of psychological components—an alternative to “mathematical factors.” Psychological Review, 42, 425–454. doi:10.1037/h0058874
    1. Tucker-Drob E. M., Bates T. C. (2015). Large cross-national differences in gene × socioeconomic status interaction on intelligence. Psychological Science, 27, 138–149. doi:10.1177/0956797615612727
    1. Tucker-Drob E. M., Brandmaier A. M., Lindenberger U. (2019). Coupled cognitive changes in adulthood: A meta-analysis. Psychological Bulletin, 145, 273–301. doi:10.1037/bul0000179
    1. van der Maas H. L. J., Dolan C. V., Grasman R. P. P. P., Wicherts J. M., Huizenga H. M., Raijmakers M. E. J. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113, 842–861. doi:10.1037/0033-295x.113.4.842
    1. van der Maas H. L. J., Kan K.-J., Borsboom D. (2014). Intelligence is what the intelligence test measures. Seriously. Journal of Intelligence, 2(1), 12–15. doi:10.3390/jintelligence2010012
    1. van der Maas H. L. J., Kan K.-J., Marsman M., Stevenson C. E. (2017). Network models for cognitive development and intelligence. Journal of Intelligence, 5(2), 16. doi:10.3390/jintelligence5020016
    1. van der Maas H. L. J., Savi A. O., Hofman A., Kan K.-J., Marsman M. (2019). The network approach to general intelligence. In McFarland D. J. (Ed.), General and specific mental abilities (pp. 108–131). Cambridge, England: Cambridge Scholars Publishing
    1. van Kesteren M. T. R., Rijpkema M., Ruiter D. J., Morris R. G. M., Fernández G. (2014). Building on prior knowledge: Schema-dependent encoding processes relate to academic performance. Journal of Cognitive Neuroscience, 26, 2250–2261. doi:10.1162/jocn_a_00630
    1. Vygotsky L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.

Source: PubMed

3
Sottoscrivi