Modulation of Hippocampal GABAergic Neurotransmission and Gephyrin Levels by Dihydromyricetin Improves Anxiety

Joshua Silva, Amy S Shao, Yi Shen, Daryl L Davies, Richard W Olsen, Daniel P Holschneider, Xuesi M Shao, Jing Liang, Joshua Silva, Amy S Shao, Yi Shen, Daryl L Davies, Richard W Olsen, Daniel P Holschneider, Xuesi M Shao, Jing Liang

Abstract

Anxiety disorders are the most common mental illness in the U.S. and are estimated to consume one-third of the country's mental health spending. Although anxiolytic therapies are available, many patients exhibit treatment-resistance, relapse, or substantial side effects. An urgent need exists to explore the underlying mechanisms of chronic anxiety and to develop alternative therapies. Presently, we identified dihydromyricetin (DHM), a flavonoid that has anxiolytic properties in a mouse model of isolation-induced anxiety. Socially isolated mice demonstrated increased anxiety levels and reduced exploratory behavior measured by elevated plus-maze and open-field tests. Socially isolated mice showed impaired GABAergic neurotransmission, including reduction in GABAA receptor-mediated extrasynaptic tonic currents, as well as amplitude and frequency of miniature inhibitory postsynaptic currents measured by whole-cell patch-clamp recordings from hippocampal slices. Furthermore, intracellular ATP levels and gephyrin expression decreased in anxious animals. DHM treatment restored ATP and gephyrin expression, GABAergic transmission and synaptic function, as well as decreased anxiety-like behavior. Our findings indicate broader roles for DHM in anxiolysis, GABAergic neurotransmission, and synaptic function. Collectively, our data suggest that reduction in intracellular ATP and gephyrin contribute to the development of anxiety, and represent novel treatment targets. DHM is a potential candidate for pharmacotherapy for anxiety disorders.

Keywords: GABAAR; anxiety; dihydromyricetin (DHM); gephyrin; social isolation.

Copyright © 2020 Silva, Shao, Shen, Davies, Olsen, Holschneider, Shao and Liang.

Figures

Figure 1
Figure 1
DHM ameliorates social isolation-induced anxiety. (A) Effects of social isolation and treatment with DHM on anxiety-like behavior as measured by the time (s) spent in the open, closed arms, and the area between cross arms (called “intersection”) of the elevated plus maze. one-way ANOVA followed by multiple comparison, Holm-Sidak method. For open arm, F(5, 30) = 26.42, p < 0.001. For close arms; F(5, 30) = 34.81, p < 0.001. For intersection, F(5, 30) = 0.50 p = 0.78. (B) Effects of social isolation and treatment with DHM on locomotor activity, exploratory behavior as measured by initial time (the time duration from when the mouse first placed into the center of the apparatus to start moving), tail up (the time of tail lifting), rearing (total number of times of rearings), path length (total distance of moving), center time (the total time duration the mouse stayed in the center 20 x 20 cm square), and corner (the total duration the mouse stayed in the 4 corner 10x10 cm squares) in the open field assay. One-way ANOVA followed by multiple comparison, Holm-Sidak method. For initial time, F(5, 30) = 108.35, p < 0.001. For tail up, F(5,30) = 184.4, P <0.001. For stay in corners F(5, 30) = 47.1, P < 0.001. For path length, F(5, 30) = 15.9, P < 0.001; For numbers of rearings, F(5, 30) = 7.74, P < 0.001. For stay in the center, P(5, 30) = 34.1, P < 0.001. *, p ≤ 0.05 vs. vehicle group housing control (G2+Veh2). †, p ≤ 0.05 vs. Iso2+Veh2, (n = 6/group).
Figure 2
Figure 2
DHM reverses social isolation-induced impairment in GABAAR-mediated neurotransmission. (A) Sample recording traces from different groups; (B) superimposed mIPSC peaks from different treatment groups. Picro: application of 50 μM of picrotoxin. GABAAR-mediated Itonic was calculated as the difference in holding current between the presence and absence of picrotoxin. (C) Summary of tonic currents from each group. (DG) Summary of mIPSC kinetics. One-way ANOVA followed by multiple comparison, Sidak method. For tonic current, F(5, 64) = 8.62, p < 0.001. For mIPSC frequency, F(5, 63) = 9.0, P < 0.001. For rise time, F(5, 63) = 0.38, P = 0.86. For decay time, F(5, 64) = 5.76, P < 0.001. For mIPSC area, F(5, 63) = 9.62. P < 0.001. *, p ≤ 0.05 vs. group-housing control (G2 + Veh2); n = 4 mice/group; there could be multiple whole-cell patch recordings per mouse.
Figure 3
Figure 3
DHM restores hippocampal ATP levels and gephyrin protein expression induced by social isolation in mice. (A) Effects of social isolation and DHM treatment on ATP levels in microdissected hippocampi (nM/mg of tissue). One-way ANOVA followed by multiple comparison, Sidak method; F(5,18) = 9.999, p<0.0001. n=4/group. (B) Representative Western blot of gephyrin expression in hippocampal sections from different treatment groups. Group: group housing for 2w; Single: singly housed for 2w or 4w, followed by Veh (vehicle), DHM or DZ treatment for 2w. The Western blot image is representative of Western blots obtained from 3 different biological experiments and was cropped for saving space. Actin was used as loading control. One-way ANOVA followed by multiple comparison, Sidak method; F(5, 15) = 5.967, p<0.05. *p ≤ 0.05 vs. group housing control (G2 + Veh2). †p ≤ 0.05 vs. Iso2+Veh2.

References

    1. Bachmanov A. A., Reed D. R., Beauchamp G. K., Tordoff M. G. (2002). Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav. Genet. 32, 435–443. 10.1023/A:1020884312053
    1. Banks S. J., Raman R., He F., Salmon D. P., Ferris S., Aisen P., et al. (2014). The Alzheimer’s Disease Cooperative Study Prevention Instrument Project: Longitudinal Outcome of Behavioral Measures as Predictors of Cognitive Decline. Dement. Geriatr. Cogn. Dis. Extra 4, 509–516. 10.1159/000357775
    1. Barnett S. A. (2007). The rat: A study in behavior. (Milton Park, Abingdon, Oxfordshire: Transaction Publishers; ).
    1. Batelaan N. M., Bosman R. C., Muntingh A., Scholten W. D., Huijbregts K. M., van Balkom A. J. L. M. (2017). Risk of relapse after antidepressant discontinuation in anxiety disorders, obsessive-compulsive disorder, and post-traumatic stress disorder: systematic review and meta-analysis of relapse prevention trials. BMJ 358, j3927. 10.1136/bmj.j3927
    1. Berry A., Bellisario V., Capoccia S., Tirassa P., Calza A., Alleva E., et al. (2012). Social deprivation stress is a triggering factor for the emergence of anxiety- and depression-like behaviours and leads to reduced brain BDNF levels in C57BL/6J mice. Psychoneuroendocrinology 37, 762–772. 10.1016/j.psyneuen.2011.09.007
    1. Chen K., Holschneider D. P., Wu W., Rebrini I., Shih J. C. (2004). A spontaneous point mutation produces monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like behavior. J. Biol. Chem. 279, 39645–39652. 10.1074/jbc.M405550200
    1. Cloos J. M., Ferreira V. (2009). Current use of benzodiazepines in anxiety disorders. Curr. Opin. Psychiatry 22, 90–95. 10.1097/YCO.0b013e32831a473d
    1. Combs H., Markman J. (2014). Anxiety Disorders in Primary Care. Med. Clin. North Am. 98, 1007–1023. 10.1016/j.mcna.2014.06.003
    1. Craske M. G., Stein M. B., Eley T. C., Milad M. R., Holmes A., Rapee R. M., et al. (2017). Anxiety disorders. Nat. Rev. Dis. Primers 3, 120–170. 10.1038/nrdp.2017.24
    1. Cryan J. F., Sweeney F. F. (2011). The age of anxiety: role of animal models of anxiolytic action in drug discovery. Br. J. Clin. Pharmacol. 164 (4), 1129–1161.
    1. Davidson J. R. (2009). First-line pharmacotherapy approaches for generalized anxiety disorder. J. Clin. Psychiatry 70, 25–31.
    1. D’Hulst C., Atack J. R., Kooy R. F. (2009). The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discov. Today 14, 866–875. 10.1016/j.drudis.2009.06.009
    1. DeVane C. L., Chiao E., Franklin M., Kruep E. J. (2005). Anxiety disorders in the 21st century: Status, challenges, opportunities, and comorbidity with depression. Am. J. Manage. Care 11, S344–S353.
    1. Dityatev A. E., Bolshakov V. Y. (2005). Amygdala, long-term potentiation, and fear conditioning. Neuroscientist 11, 75–88. 10.1177/1073858404270857
    1. Dominguez G., Henkous N., Pierard C., Belzung C., Mons N., Beracochea D. (2018). Repeated diazepam administration reversed working memory impairments and glucocorticoid alterations in the prefrontal cortex after short but not long alcohol-withdrawal periods. Cogn. Affect. Behav. Neurosci. 18, 665–679. 10.3758/s13415-018-0595-3
    1. Earnheart J. C., Schweizer C., Crestani F., Iwasato T., Itohara S., Mohler H., et al. (2007). GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states. J. Neurosci. 27, 3845–3854. 10.1523/JNEUROSCI.3609-06.2007
    1. Hershenberg R., Gros D. F., Brawman-Mintzer O. (2014). Role of atypical antipsychotics in the treatment of generalized anxiety disorder. CNS Drugs 28, 519–533. 10.1007/s40263-014-0162-6
    1. Hollis F., Van Der Kooij M. A., Zanoletti O., Lozano L., Cantó C., Sandi C. (2015). Mitochondrial function in the brain links anxiety with social subordination. Proc. Natl. Acad. Sci. U. S. A. 112, 15486–15491. 10.1073/pnas.1512653112
    1. Hyun T. K., Eom S. H., Yu C. Y., Roitsch T. (2010). Hovenia dulcis - An Asian traditional herb. Planta Med. 76, 943–949. 10.1055/s-0030-1249776
    1. Ieraci A., Mallei A., Popoli M. (2016). Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice. Neural Plast. 2016, 6212983. 10.1155/2016/6212983
    1. Kapogiannatou A., Paronis E., Paschidis K., Polissidis A., Kostomitsopoulos N. G. (2016). Effect of light colour temperature and intensity on τhϵ behaviour of male C57CL/6J mice. Appl. Anim. Behav. Sci. 184, 135–140. 10.1016/j.applanim.2016.08.005
    1. Karim N., Abdel-Halim H., Gavande N. (2018). Anxiolytic Potential of Natural Flavonoids.
    1. Kessler R. C., Wai T. C., Demler O., Walters E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 617–627. 10.1001/archpsyc.62.6.617
    1. Koike H., Ibi D., Mizoguchi H., Nagai T., Nitta A., Takuma K., et al. (2009). Behavioral abnormality and pharmacologic response in social isolation-reared mice. Behav. Brain Res. 202, 114–121. 10.1016/j.bbr.2009.03.028
    1. Konnopka A., Leichsenring F., Leibing E., König H. H. (2009). Cost-of-illness studies and cost-effectiveness analyses in anxiety disorders: A systematic review. J. Affect. Disord. 114, 14–31. 10.1016/j.jad.2008.07.014
    1. Koskela S., Turunen T., Ala-Laurila P. (2020). Mice Reach Higher Visual Sensitivity at Night by Using a More Efficient Behavioral Strategy. Curr. Biol. 30, 42–53.e4. 10.1016/j.cub.2019.11.021
    1. Kou X., Shen K., An Y., Qi S., Dai W. X., Yin Z. (2012). Ampelopsin inhibits H 2O 2-induced apoptosis by ERK and Akt signaling pathways and up-regulation of heme oxygenase-1. Phyther. Res. 26, 988–994. 10.1002/ptr.3671
    1. Kudryavtseva N. N., Bondar’ N. P. (2002). Anxiolytic and anxiogenic effects of diazepam in male mice with different experience of aggression. Bull. Exp. Biol. Med. 133, 372–376. 10.1023/A:1016202205966
    1. Lander S. S., Linder-Shacham D., Gaisler-Salomon I. (2017). Differential effects of social isolation in adolescent and adult mice on behavior and cortical gene expression. Behav. Brain Res. 316, 245–254. 10.1016/j.bbr.2016.09.005
    1. Lenze E. J., Wetherell J. L. (2011). A Lifespan view of anxiety disorders. Dialogues Clin. Neurosci. 13, 381–399.
    1. Liang J., Cagetti E., Olsen R. W., Spigelman I. (2004. a). Altered pharmacology of synaptic and extrasynaptic GABAA receptors on CA1 hippocampal neurons is consistent with subunit changes in a model of alcohol withdrawal and dependence. J. Pharmacol. Exp. Ther. 310, 1234–1245. 10.1124/jpet.104.067983
    1. Liang J., Suryanarayanan A., Abriam A., Snyder B., Olsen R. W., Spigelman I. (2007). Mechanisms of reversible GABAa receptor plasticity after ethanol intoxication. J. Neurosci. 27, 12367–12377. 10.1523/JNEUROSCI.2786-07.2007
    1. Liang J., Spigelman I., Olsen R. W. (2009). Tolerance to sedative/hypnotic actions of GABAergic drugs correlates with tolerance to potentiation of extrasynaptic tonic currents of alcohol-dependent rats. J. Neurophysiol. 102 (1), 224–233. 10.1152/jn.90484.2008
    1. Liang J., Lindemeyer A. K., Shen Y., López-Valdés H. E., Martínez-Coria H., Shao X. M., et al. (2014. a). Dihydromyricetin ameliorates behavioral deficits and reverses neuropathology of transgenic mouse models of Alzheimer’s disease. Neurochem. Res. 39, 1171–1181. 10.1007/s11064-014-1304-4
    1. Liang J., Shen Y., Shao X. M., Scott M. B., Ly E., Wong S., et al. (2014. b). Dihydromyricetin prevents fetal alcohol exposure-induced behavioral and physiological deficits: The roles of GABAA receptors in adolescence. Neurochem. Res. 39, 1147–1161. 10.1007/s11064-014-1291-5
    1. Lindemeyer A. K., Shen Y., Yazdani F., Shao X. M., Spigelman I., Davies D. L., et al. (2017). α2 subunit–containing GABAA receptor subtypes are upregulated and contribute to alcohol-induced functional plasticity in the rat hippocampus. Mol. Pharmacol. 92, 101–112. 10.1124/mol.116.107797
    1. Liu P., Zou D., Chen K., Zhou Q., Gao Y., Huang Y. (2016). Dihydromyricetin Improves Hypobaric Hypoxia-Induced Memory Impairment via Modulation of SIRT3 Signaling. Mol. Neurobiol. 53, 7200–7212. 10.1007/s12035-015-9627-y
    1. Ma X. C., Jiang D., Jiang W., Wang F., Jia M., Wu J., et al. (2011). Social isolation-induced aggression potentiates anxiety and depressive-like behavior in male mice subjected to unpredictable chronic mild stress. PloS One 6, 1–7. 10.1371/journal.pone.0020955
    1. Machado P., Rostaing P., Guigonis J. M., Renner M., Dumoulin A., Samson M., et al. (2011). Heat shock cognate protein 70 regulates gephyrin clustering. J. Neurosci. 31, 3–14. 10.1523/JNEUROSCI.2533-10.2011
    1. Matsumoto K., Pinna G., Puia G., Guidotti A., Costa E. (2005). Social isolation stress-induced aggression in mice: A model to study the pharmacology of neurosteroidogenesis. Stress 8, 85–93. 10.1080/10253890500159022
    1. McReynolds W. E., Weir M. W., DeFries J. C. (1967). Open-field behavior in mice: Effect of test illumination. Psychon. Sci. 9, 277–278. 10.3758/BF03332220
    1. Merikangas K. R., He J. P., Brody D., Fisher P. W., Bourdon K., Koretz D. S. (2010). Prevalence and treatment of mental disorders among US children in the 2001-2004 NHANES. Pediatrics 125, 75–81. 10.1542/peds.2008-2598
    1. Nutt D., Bell C. (1997). Practical pharmacotherapy for anxiety. Adv. Psychiatr. 3 (2), 79–85.
    1. Ojima K., Matsumoto K., Watanabe H. (1997). Flumazenil reverses the decrease in the hypnotic activity of pentobarbital by social isolation stress: Are endogenous benzodiazepine receptor ligands involved? Brain Res. 745, 127–133. 10.1016/S0006-8993(96)01136-5
    1. Olsen R. W., Sieghart W. (2008). International Union of Pharmacology. LXX. Subtypes of γ-aminobutyric acidA receptors: Classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. 60, 243–260. 10.1124/pr.108.00505
    1. Parra L. A., Baust T. B., Smith A. D., Jaumotte J. D., Zigmond M. J., Torres S., et al. (2016). The molecular chaperone Hsc70 interacts with tyrosine hydroxylase to regulate enzyme activity and synaptic vesicle localization. J. Biol. Chem. 291, 17510–17522. 10.1074/jbc.M116.728782
    1. Peirson S. N., Brown L. A., Pothecary C. A., Benson L. A., Fisk A. S. (2018). Light and the laboratory mouse. J. Neurosci. Methods 300, 26–36. 10.1016/j.jneumeth.2017.04.007
    1. Pellow S., Chopin P., File S. E., Briley M. (1985). Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14 (3), 149–167. 10.1016/0165-0270(85)90031-7
    1. Pinna G., Costa E., Guidotti A. (2004). Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids. Proc. Natl. Acad. Sci. U. S. A. 101, 6222–6225. 10.1073/pnas.0401479101
    1. Pinna G., Agis-Balboa R. C., Zhubi A., Matsumoto K., Grayson D. R., Costa E., et al. (2006). Imidazenil and diazepam increase locomotor activity in mice exposed to protracted social isolation. Proc. Natl. Acad. Sci. U. S. A. 103, 4275–4280. 10.1073/pnas.0600329103
    1. Pinto J. G. A., Hornby K. R., Jones D. G., Murphy K. M. (2010). Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan. Front. Cell. Neurosci. 4, 1–12. 10.3389/fncel.2010.00016
    1. Prut L., Belzung C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 463 (1-3), 3–33. 10.1016/S0014-2999(03)01272-X
    1. Rickels K., Rynn M. (2002) Overview and clinical presentation of generalized anxiety disorder. Psychiatr. Clin. North Am. 24 (1), 1–17.
    1. Rodgers R. J., Shepherd J. K. (1993). Influence of prior maze experience on behaviour and responses to diazepam in the elevated plus-maze in male mice depends upon treatment regimen and prior maze experience. Psychopharmacol. (Berl.) 106, 102–110. 10.1007/BF02253596
    1. Roy-Byrne P. (2015). Treatment-refractory anxiety; definition, risk factors, and treatment challenges. Dialogues Clin. Neurosci. 17, 191–206.
    1. Rozycka A., Liguz-Lecznar M. (2017). The space where aging acts: focus on the GABAergic synapse. Aging Cell 16, 634–643. 10.1111/acel.12605
    1. Rudolph U., Knoflach F. (2011). Beyond classical benzodiazepines: Novel therapeutic potential of GABA A receptor subtypes. Nat. Rev. Drug Discovery 10, 685–697. 10.1038/nrd3502
    1. Sánchez C., Meier E. (1997). Behavioral profiles of SSRIs in animal models of depression, anxiety and aggression. Are they all alike? Psychopharmacol. (Berl.) 129, 197–205. 10.1007/s002130050181
    1. Serra M., Pisu M. G., Littera M., Papi G., Sanna E., Tuveri F., et al. (2000). Social isolation-induced decreases in both the abundance of neuroactive steroids and GABA(A) receptor function in rat brain. J. Neurochem. 75, 732–740. 10.1046/j.1471-4159.2000.0750732.x
    1. Serra M., Mostallino M. C., Talani G., Pisu M. G., Carta M., Mura M. L., et al. (2006). Social isolation-induced increase in α4 and δ subunit gene expression is associated with a greater efficacy of ethanol on steroidogenesis and GABAA receptor function. J. Neurochem. 98, 122–133. 10.1111/j.1471-4159.2006.03850.x
    1. Shekhar A., Hingtgen J. N., DiMicco J. A. (1990). GABA receptors in the posterior hypothalamus regulate experimental anxiety in rats. Brain Res. 512, 81–88. 10.1016/0006-8993(90)91173-E
    1. Shekhar A. (1993). GABA receptors in the region of the dorsomedial hypothalamus of rats regulate anxiety in the elevated plus-maze test. I. Behavioral measures. Brain Res. 627, 9–16. 10.1016/0006-8993(93)90742-6
    1. Shen Y., Lindemeyer K., Gonzalez C., Shao X. M., Spigelman I., Olsen R. W., et al. (2012). Dihydromyricetin as a novel anti-alcohol intoxication medication. J. Neurosci. 32, 390–401. 10.1523/JNEUROSCI.4639-11.2012
    1. Shi L., Zhang T., Liang X., Hu Q., Huang J., Zhou Y., et al. (2015). Dihydromyricetin improves skeletal muscle insulin resistance by inducing autophagy via the AMPK signaling pathway. Mol. Cell. Endocrinol. 409, 92–102. 10.1016/j.mce.2015.03.009
    1. Sinoff G., Werner P. (2003). Anxiety disorder and accompanying subjective memory loss in the elderly as a predictor of future cognitive decline. Int. J. Geriatr. Psychiatry 18, 951–959. 10.1002/gps.1004
    1. Toghanian S., Di Bonaventura M., Järbrink K., Locklear J. C. (2014). Economic and humanistic burden of illness in generalized anxiety disorder: An analysis of patient survey data in Europe. Clin. Outcomes Res. 6, 151–163. 10.2147/CEOR.S55429
    1. Varty G. B., Powell S. B., Lehmann-Masten V., Buell M. R., Geyer M. A. (2006). Isolation rearing of mice induces deficits in prepulse inhibition of the startle response. Behav. Brain Res. 169, 162–167. 10.1016/j.bbr.2005.11.025
    1. Walf A. A., Frye C. A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2 (2), 322–328. 10.1038/nprot.2007.44
    1. Wang H., Bedford F. K., Brandon N. J., Moss S. J., Olsen R. W. (1999). GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397, 69–72. 10.1038/16264
    1. Wongwitdecha N., Marsden C. A. (1996). Social isolation increases aggressive behaviour and alters the effects of diazepam in the rat social interaction test. Behav. Brain Res. 75, 27–32. 10.1016/0166-4328(96)00181-7
    1. Yu W., Jiang M., Miralles C. P., Li R., Chen G., de Blas A. L. (2007). Gephyrin clustering is required for the stability of GABAergic synapses. Mol. Cell. Neurosci. 36, 484–500. 10.1016/j.mcn.2007.08.008
    1. Zeng X., Yang J., Hu O., Huang J., Ran L., Chen M., et al. (2019). Dihydromyricetin Ameliorates Nonalcoholic Fatty Liver Disease by Improving Mitochondrial Respiratory Capacity and Redox Homeostasis Through Modulation of SIRT3 Signaling. Antioxidants Redox Signal. 30, 163–183. 10.1089/ars.2017.7172

Source: PubMed

3
Sottoscrivi