Efficacy and mechanisms of combined aerobic exercise and cognitive training in mild cognitive impairment: study protocol of the ACT trial

Fang Yu, Feng Vankee Lin, Dereck L Salisbury, Krupa N Shah, Lisa Chow, David Vock, Nathaniel W Nelson, Anton P Porsteinsson, Clifford Jack Jr, Fang Yu, Feng Vankee Lin, Dereck L Salisbury, Krupa N Shah, Lisa Chow, David Vock, Nathaniel W Nelson, Anton P Porsteinsson, Clifford Jack Jr

Abstract

Background: Developing non-pharmacological interventions with strong potential to prevent or delay the onset of Alzheimer's disease (AD) in high-risk populations is critical. Aerobic exercise and cognitive training are two promising interventions. Aerobic exercise increases aerobic fitness, which in turn improves brain structure and function, while cognitive training improves selective brain function intensively. Hence, combined aerobic exercise and cognitive training may have a synergistic effect on cognition by complementary strengthening of different neural functions. Few studies have tested the effects of such a combined intervention, and the findings have been discrepant, largely due to varying doses and formats of the interventions.

Methods/design: The purpose of this single-blinded, 2 × 2 factorial phase II randomized controlled trial is to test the efficacy and synergistic effects of a 6-month combined cycling and speed of processing training intervention on cognition and relevant mechanisms (aerobic fitness, cortical thickness, and functional connectivity in the default mode network) in older adults with amnestic mild cognitive impairment. This trial will randomize 128 participants equally to four arms: cycling and speed of processing, cycling only, speed of processing only, or attention control for 6 months, and then follow them for another 12 months. Cognition and aerobic fitness will be assessed at baseline and at 3, 6, 12, and 18 months; cortical thickness and functional connectivity at baseline and at 6, 12, and 18 months; Alzheimer's disease (AD) conversion at 6, 12, and 18 months. The specific aims are to (1) determine the efficacy and synergistic effects of the combined intervention on cognition over 6 months, (2) examine the underlying mechanisms of the combined intervention, and (3) calculate the long-term effect sizes of the combined intervention on cognition and AD conversion. The analysis will use intention-to-treat and linear mixed-effects modeling.

Discussion: This trial will be among the first to test the synergistic effects on cognition and mechanisms (relevant to Alzheimer's-associated neurodegeneration) of a uniquely conceptualized and rigorously designed aerobic exercise and cognitive training intervention in older adults with mild cognitive impairment. It will advance Alzheimer's prevention research by providing precise effect-size estimates of the combined intervention.

Trial registration: ClinicalTrials.gov, NCT03313895 . Registered on 18 October 2017.

Keywords: Aerobic exercise; Aerobic fitness; Alzheimer’s disease; Cognitive training; Executive function; Memory; Neuroimaging.

Conflict of interest statement

Authors’ information

Provided on the title page.

Ethics approval and consent to participate

This study was approved by the University’s IRB. The consent process was detailed in the manuscript.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Schedule of enrollment, interventions, and assessments

References

    1. Alzheimer's Association. 2018 Alzheimer's disease facts and figures. . Accessed 14 Mar 2018.
    1. Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology. 2013;80(19):1778–1783.
    1. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–279.
    1. Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia—-meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119(4):252–265.
    1. Lin F, Heidrich SM. Role of older adult’s illness schemata in coping with Mild Cognitive Impairment. J Psychosom Res. 2012;72(5):357–363.
    1. Daviglus ML, Bell CC, Berrettini W, et al. National Institutes of Health state-of-the-science conference statement: preventing Alzheimer’s disease and cognitive decline. Ann Intern Med. 2010;153(3):176–181.
    1. American College of Sports Medicine . ACSM’s guidelines for exercise testing and prescription. 9. Baltimore: Lippincott Williams & Wilkins; 2013.
    1. Andel R, Crowe M, Pedersen NL, Fratiglioni L, Johansson B, Gatz M. Physical exercise at midlife and risk of dementia three decades later: a population-based study of Swedish twins. J Gerontol A Biol Sci Med Sci. 2008;63(1):62–66.
    1. Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004;3(6):343–353.
    1. Larson EB, Wang L, Bowen JD, et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med. 2006;144(2):73–81.
    1. Laurin D. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol. 2001;58(3):498–504.
    1. Rovio S, Kareholt I, Helkala EL, et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol. 2005;4(11):705–711.
    1. Hassmen P, Ceci R, Backman L. Exercise for older women: a training method and its influences on physical and cognitive performance. Eur J Appl Physiol Occup Physiol. 1992;64(5):460–466.
    1. Hawkins H, Kramer A, Capaldi D. Aging, exercise, and attention. Psychol Aging. 1992;7(4):643–653.
    1. Rikli RE, Edwards DJ. Effects of a three-year exercise program on motor function and cognitive processing speed in older women. Res Q Exerc Sport. 1991;62(1):61–67.
    1. Williams P, Lord SR. Effects of group exercise on cognitive functioning and mood in older women. Aust N Z J Public Health. 1997;21(1):45–52.
    1. van Uffelen JGZ, Chinapaw MJM, van Mechelen W, Hopman-Rock M. Walking or vitamin B for cognition in older adults with mild cognitive impairment? A randomised controlled trial. Br J Sports Med. 2008;42(5):344–351.
    1. Zheng G, Xia R, Zhou W, Tao J, Chen L. Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2016;50(23):1443–1450.
    1. Lautenschlager NT, Cox KL, Flicker L, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. J Am Med Assoc. 2008;300(9):1027–1037.
    1. Burns JM, Cronk BB, Anderson HS, et al. Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology. 2008;71(3):210–216.
    1. Burns JM, Mayo MS, Anderson HS, Smith HJ, Donnelly JE. Cardiorespiratory fitness in early-stage Alzheimer disease. Alzheimer Dis Assoc Disord. 2008;22(1):39–46.
    1. Bugg JM, Head D. Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiol Aging. 2011;32(3):506–514.
    1. Erickson KI, Prakash RS, Voss MW, et al. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus. 2009;19(10):1030–1039.
    1. Spartano NL, Himali JJ, Beiser AS, et al. Midlife exercise blood pressure, heart rate, and fitness relate to brain volume 2 decades later. Neurology. 2016;86(14):1313–1319.
    1. Burdette JH, Laurienti PJ, Espeland MA, et al. Using network science to evaluate exercise-associated brain changes in older adults. Front Aging Neurosci. 2010;2:23.
    1. Rosano C, Venkatraman VK, Guralnik J, et al. Psychomotor speed and functional brain MRI 2 years after completing a physical activity treatment. J Gerontol A Biol Sci Med Sci. 2010;65(6):639–647.
    1. Voss MW, Prakash RS, Erickson KI, et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci. 2010;2:32.
    1. Voss MW, Erickson KI, Prakash RS, et al. Functional connectivity: a source of variance in the association between cardiorespiratory fitness and cognition? Neuropsychologia. 2010;48(5):1394–1406.
    1. Martin M, Clare L, Altgassen AM, Cameron MH, Zehnder F. Cognition-based interventions for healthy older people and people with mild cognitive impairment. Cochrane Database Syst Rev. 2011;1:CD006220.
    1. Kueider AM, Parisi JM, Gross AL, Rebok GW. Computerized cognitive training with older adults: a systematic review. PLoS One. 2012;7(7):e40588.
    1. Lovden M, Backman L, Lindenberger U, Schaefer S, Schmiedek F. A theoretical framework for the study of adult cognitive plasticity. Psychol Bull. 2011;136(4):659–676.
    1. Valdes EG, O’Connor ML, Edwards JD. The effects of cognitive speed of processing training among older adults with psychometrically- defined mild cognitive impairment. Curr Alzheimer Res. 2012;9(9):999–1009.
    1. Mozolic JL, Hayasaka S, Laurienti PJ. A cognitive training intervention increases resting cerebral blood flow in healthy older adults. Front Hum Neurosci. 2012;4:16.
    1. Takeuchi H, Taki Y, Hashizume H, et al. Effects of training of processing speed on neural systems. J Neurosci. 2011;`31(34):12139–48.
    1. Lin F, Heffner KL, Ren P, et al. Cognitive and neural effects of vision-based speed-of-processing training in older adults with amnestic mild cognitive impairment: a pilot study. J Am Geriatr Soc. 2016;64(6):1293–1298.
    1. Curlik DM, Shors TJ. Training your brain: do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus? Neuropharmacology. 2013;64:506–514.
    1. Fabel K, Wolf SA, Ehninger D, Babu H, Leal-Galicia P, Kempermann G. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci. 2009;3:50.
    1. Kempermann G. Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol. 2002;52(2):135–143.
    1. Galvan V, Bredesen DE. Neurogenesis in the adult brain: implications for Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2007;6(5):303–310.
    1. Hotting K, Roder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9 Pt B):2243–2257.
    1. Shors TJ, Anderson ML, Curlik DM, 2nd, Nokia MS. Use it or lose it: how neurogenesis keeps the brain fit for learning. Behav Brain Res. 2012;227(2):450–458.
    1. Barnes DE, Santos-Modesitt W, Poelke G, et al. The Mental Activity and eXercise (MAX) trial: a randomized controlled trial to enhance cognitive function in older adults. JAMA Intern Med. 2013;173(9):797–804.
    1. McDaniel MA, Binder EF, Bugg JM, et al. Effects of cognitive training with and without aerobic exercise on cognitively demanding everyday activities. Psychol Aging. 2014;29(3):717–730.
    1. Fabre C, Chamari K, Mucci P, Masse-Biron J, Prefaut C. Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. Int J Sports Med. 2002;23(6):415–421.
    1. Legault C, Jennings JM, Katula JA, et al. Designing clinical trials for assessing the effects of cognitive training and physical activity interventions on cognitive outcomes: the Seniors Health and Activity Research Program Pilot (SHARP-P) study, a randomized controlled trial. BMC Geriatr. 2011;11:27.
    1. Theill N, Schumacher V, Adelsberger R, Martin M, Jancke L. Effects of simultaneously performed cognitive and physical training in older adults. BMC Neurosci. 2013;14:103.
    1. Train the Brain Consortium Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: the Train the Brain study. Sci Rep. 2017;7:39471.
    1. Onken LS, Carroll KM, Shoham V, Cuthbert BN, Riddle M. Reenvisioning clinical science: unifying the discipline to improve the public health. Clin Psychol Sci. 2014;2(1):22–34.
    1. Jack CR, Jr, Wiste HJ, Weigand SD, et al. Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings. Brain. 2015;138(12):3747–3759.
    1. Sorg C, Riedl V, Muhlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2007;104(47):18760–18765.
    1. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Ann Intern Med. 2010;152(11):726–732.
    1. Chan AW, Tetzlaff JM, Altman DG, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–207.
    1. Yu F, Nelson NW, Savik K, Wyman JF, Dyskin M, Bronas UG. Affecting cognition and quality of life via aerobic exercise in Alzheimer’s disease. West J Nurs Res. 2013;35(1):24–38.
    1. Lin F, Heffner K, Ren P, Tadin D. A role of the parasympathetic nervous system in cognitive training. Curr Alzheimer Res. 2017;14(7):784–789.
    1. Salisbury D, Yu F. Aerobic fitness and cognitive changes after exercise training in Alzheimer’s disease. J Exerc Clin Psychol. 2018;6(2):22–28.
    1. Kramer JH, Mungas D, Possin KL, et al. NIH EXAMINER: conceptualization and development of an executive function battery. J Int Neuropsychol Soc. 2014;20(1):11–19.
    1. Possin KL, Feigenbaum D, Rankin KP, et al. Dissociable executive functions in behavioral variant frontotemporal and Alzheimer dementias. Neurology. 2013;80(24):2180–2185.
    1. Estevez-Gonzalez A, Kulisevsky J, Boltes A, Otermin P, Garcia-Sanchez C. Rey verbal learning test is a useful tool for differential diagnosis in the preclinical phase of Alzheimer’s disease: comparison with mild cognitive impairment and normal aging. Int J Geriatr Psychiatry. 2003;18(11):1021–1028.
    1. Gale SD, Baxter L, Thompson J. Greater memory impairment in dementing females than males relative to sex-matched healthy controls. J Clin Exp Neuropsychol. 2016;38(5):527–533.
    1. Singh SJ, Morgan MD, Scott S, Walters D, Hardman AE. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax. 1992;47(12):1019–1024.
    1. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging and the Alzheimer’s Association workgroup. Alzheimers Dement. 2011;7(3):263–269.
    1. Jack CR, Jr, Barnes J, Bernstein MA, et al. Magnetic resonance imaging in Alzheimer’s Disease Neuroimaging Initiative 2. Alzheimers Dement. 2015;11(7):740–756.
    1. Yu F, Bronas UG, Konety S, et al. Effects of aerobic exercise on cognition and hippocampal volume in Alzheimer’s disease: study protocol of a randomized controlled trial (The FIT-AD trial) Trials. 2014;15:394.
    1. Bellg AJ, Borrelli B, Resnick B, et al. Ehancing treatment fidelity in health behavior change studies: Best practices and recommendations from the NIH behavior change consortium. Health Psychol. 2004;23(5):443–51.
    1. Yu F. Improving recruitment, retention, and adherence to 6-month cycling in Alzheimer’s disease. Geriatr Nurs. 2013;34(3):181–186.
    1. Lindsay J, Laurin D, Verreault R, et al. Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol. 2002;156(5):445–453.
    1. Jack CR, Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–562.

Source: PubMed

3
Sottoscrivi