Efficacy of the treatment with dapagliflozin and metformin compared to metformin monotherapy for weight loss in patients with class III obesity: a randomized controlled trial

Aldo Ferreira-Hermosillo, Mario Antonio Molina-Ayala, Diana Molina-Guerrero, Ana Pamela Garrido-Mendoza, Claudia Ramírez-Rentería, Victoria Mendoza-Zubieta, Etual Espinosa, Moisés Mercado, Aldo Ferreira-Hermosillo, Mario Antonio Molina-Ayala, Diana Molina-Guerrero, Ana Pamela Garrido-Mendoza, Claudia Ramírez-Rentería, Victoria Mendoza-Zubieta, Etual Espinosa, Moisés Mercado

Abstract

Background: Mexico has one of the highest prevalence rates of obesity worldwide. New pharmacological strategies that focus on people with class III obesity are required. Metformin and dapagliflozin are two drugs approved for the treatment of diabetes. Beyond its effects on glucose, metformin has been suggested by some studies to result in weight loss. Therapy with dapagliflozin is associated with a mild but sustained weight loss in patients with diabetes. The primary outcome of the study is to determine if the combined treatment with dapagliflozin and metformin is more effective than monotherapy with metformin for weight loss in patients with class III obesity and prediabetes or diabetes who are awaiting bariatric surgery (including those patients who do have surgery). We also aimed to assess the effect of this combined treatment on waist circumference, triglycerides, blood pressure, and inflammatory cytokines.

Methods: This randomized phase IV clinical trial will include patients with diabetes or prediabetes who are between the ages of 18 and 60 years and exhibit grade III obesity (defined as body mass index ≥ 40 kg/m2). Patients using insulin will be excluded. Subjects will be randomized to one of two groups as follows: 1) metformin tablets 850 mg PO bid or 2) metformin tablets 850 mg PO bid plus dapagliflozin tablets 10 mg PO qd. The sample size required is 108 patients, which allows for a 20% dropout rate: 54 patients in the metformin group and 54 in the metformin/dapagliflozin group. All participants will receive personalized nutritional advice during the study. A run-in period of one month will be used to assess tolerance and adherence to treatment regimens. Anthropometric and biochemical variables will be recorded at baseline and at 1, 3, 6, and 12 months. A serum sample to determine glucagon, ghrelin, adiponectin, resistin, interleukin 6, and interleukin 10 will be collected at baseline and before surgery, or at 12 months (whatever happens first). Adherence to treatment and adverse and secondary events will be recorded throughout the study. An intention-to-treat analysis will be used.

Discussion: Forty-six percent of the patients in our Obesity Clinic have been diagnosed with prediabetes (32%) or diabetes (14%). The use of dapagliflozin in this population could improve weight loss and other cardiovascular factors. This effect could be translated into less time before undergoing bariatric surgery and better control of associated comorbidities.

Trial registration: Clinicaltrials.gov, ID: NCT03968224. Retrospectively registered on May 29, 2019.

Keywords: Metformin; Morbid; Obesity; Prediabetes; Sodium-glucose transporter 2 inhibitors; Type 2 Diabetes Mellitus.

Conflict of interest statement

AFH is the Associate Editor of the BMC Endocrine Disorders Journal. The remaining authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Schedule of enrollment, interventions, and assessments in accordance with Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT). M metformin, D/M dapagliflozin/metformin, BMI body mass index, WC waist circumference, TC total cholesterol, TG triglycerides, HDL-c high density cholesterol, LDL-c low density cholesterol, IL-6 interleukin-6, IL-10 interleukin-10, AE adverse event, SE secondary event

References

    1. Fioretto P, Giaccari A, Sesti G. Efficacy and safety of dapagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in diabetes mellitus. Cardiovasc Diabetol. 2015;14(1):142. doi: 10.1186/s12933-015-0297-x.
    1. Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens. 2014;8(4):262–75.e9. doi: 10.1016/j.jash.2014.01.007.
    1. Jayawardene D, Ward GM, O'Neal DN, Theverkalam G, MacIsaac AI, MacIsaac RJ. New treatments for type 2 diabetes: cardiovascular protection beyond glucose lowering? Heart Lung Circ. 2014;23(11):997–1008. doi: 10.1016/j.hlc.2014.05.007.
    1. Faerch K, Amadid H, Nielsen LB, Ried-Larsen M, Karstoft K, Persson F, et al. Protocol for a randomised controlled trial of the effect of dapagliflozin, metformin and exercise on glycaemic variability, body composition and cardiovascular risk in prediabetes (the PRE-D Trial) BMJ Open. 2017;7(5):e013802. doi: 10.1136/bmjopen-2016-013802.
    1. Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–274. doi: 10.7326/0003-4819-159-4-201308200-00007.
    1. Monami M, Nreu B, Zannoni S, Lualdi C, Mannucci E. Effects of SGLT-2 inhibitors on diabetic ketoacidosis: a meta-analysis of randomised controlled trials. Diabetes Res Clin Pract. 2017;130:53–60. doi: 10.1016/j.diabres.2017.04.017.
    1. Pryor R, Cabreiro F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J. 2015;471(3):307–322. doi: 10.1042/BJ20150497.
    1. Mogul HR, Peterson SJ, Weinstein BI, Zhang S, Southren AL. Metformin and carbohydrate-modified diet: a novel obesity treatment protocol: preliminary findings from a case series of nondiabetic women with midlife weight gain and hyperinsulinemia. Heart Dis. 2001;3(5):285–292. doi: 10.1097/00132580-200109000-00002.
    1. Devenny JJ, Godonis HE, Harvey SJ, Rooney S, Cullen MJ, Pelleymounter MA. Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats. Obesity (Silver Spring) 2012;20(8):1645–1652. doi: 10.1038/oby.2012.59.
    1. Nauck MA, Del Prato S, Duran-Garcia S, Rohwedder K, Langkilde AM, Sugg J, et al. Durability of glycaemic efficacy over 2 years with dapagliflozin versus glipizide as add-on therapies in patients whose type 2 diabetes mellitus is inadequately controlled with metformin. Diabetes Obes Metab. 2014;16(11):1111–1120. doi: 10.1111/dom.12327.
    1. List JF, Woo V, Morales E, Tang W, Fiedorek FT. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care. 2009;32(4):650–657. doi: 10.2337/dc08-1863.
    1. Rosenstock J, Vico M, Wei L, Salsali A, List JF. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA(1c), body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care. 2012;35(7):1473–1478. doi: 10.2337/dc11-1693.
    1. Orme M, Fenici P, Lomon ID, Wygant G, Townsend R, Roudaut M. A systematic review and mixed-treatment comparison of dapagliflozin with existing anti-diabetes treatments for those with type 2 diabetes mellitus inadequately controlled by sulfonylurea monotherapy. Diabetol Metab Syndr. 2014;6:73. doi: 10.1186/1758-5996-6-73.
    1. Jabbour SA, Hardy E, Sugg J, Parikh S. Dapagliflozin is effective as add-on therapy to sitagliptin with or without metformin: a 24-week, multicenter, randomized, double-blind, placebo-controlled study. Diabetes Care. 2014;37(3):740–750. doi: 10.2337/dc13-0467.
    1. Bolinder J, Ljunggren O, Kullberg J, Johansson L, Wilding J, Langkilde AM, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97(3):1020–1031. doi: 10.1210/jc.2011-2260.
    1. Zhang Q, Dou J, Lu J. Combinational therapy with metformin and sodium-glucose cotransporter inhibitors in management of type 2 diabetes: systematic review and meta-analyses. Diabetes Res Clin Pract. 2014;105(3):313–321. doi: 10.1016/j.diabres.2014.06.006.
    1. Santo MA, Riccioppo D, Pajecki D, Cleva R, Kawamoto F, Cecconello I. Preoperative weight loss in super-obese patients: study of the rate of weight loss and its effects on surgical morbidity. Clinics (Sao Paulo) 2014;69(12):828–834. doi: 10.6061/clinics/2014(12)07.
    1. Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, et al. Pharmacological management of obesity: an endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(2):342–362. doi: 10.1210/jc.2014-3415.
    1. Elliott JP, Gray EL, Yu J, Kalarchian MA. Medication Use Among Patients Prior to Bariatric Surgery. Bariatr Surg Pract Patient Care. 2015;10(3):105–109. doi: 10.1089/bari.2015.0006.
    1. American DA. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S90–S102. doi: 10.2337/dc19-S009.
    1. American DA. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S13–S28. doi: 10.2337/dc19-S002.
    1. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gotzsche PC, Krle AJK, et al. SPIRIT 2013 Statement: defining standard protocol items for clinical trials. Rev Panam Salud Publica. 2015;38(6):506–514.
    1. Urbaniak GC, Plous S. Research Randomizer (version 4.0). 2013. . Accesed 1 Aug 2019.
    1. US Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. 2017. . Accessed 28 May 2018.
    1. Beechy L, Galpern J, Petrone A, Das SK. Assessment tools in obesity - psychological measures, diet, activity, and body composition. Physiol Behav. 2012;107(1):154–171. doi: 10.1016/j.physbeh.2012.04.013.
    1. Shamah-Levy T, Villalpando-Hernández S, Rivera-Dommarco J, editors. Manual de Procedimientos para Proyectos de Nutrición. Cuernavaca: Instituto Nacional de Salud Pública; 2006.
    1. Velázquez-Monroy O, Lara-Esqueda A, Tapia-Olarte F, Romo-López L, Carrillo-Toscano J, Colín-Cario M, Montes-Reyes G. Manual de Procedimientos. Toma de medidas clínicas y antropométricas en el adulto y adulto mayor. 2002. . Accesed 28 May 2018.
    1. Romero-Martinez M, Shamah-Levy T, Cuevas-Nasu L, Gomez-Humaran IM, Gaona-Pineda EB, Gomez-Acosta LM, et al. Methodological design of the National Health and Nutrition Survey 2016. Salud Publica Mex. 2017;59(3):299–305. doi: 10.21149/8593.
    1. Sanchez-Ruiz KL, Ferreira-Hermosillo A, Molina-Ayala MA, Ramirez-Renteria C, Mendoza-Zubieta V. Evaluation of cardiovascular risk factors in obesity before and after bariatric surgery. Rev Med Inst Mex Seguro Soc. 2017;55(5):556–567.
    1. Ferreira-Hermosillo A, Salame-Khouri L, Cuenca-Abruch D. Pharmacological treatment of obesity. Rev Med Inst Mex Seguro Soc. 2018;56(4):395–409.
    1. Perez-Cuevas R, Doubova SV, Suarez-Ortega M, Law M, Pande AH, Escobedo J, et al. Evaluating quality of care for patients with type 2 diabetes using electronic health record information in Mexico. BMC Med Inform Decis Mak. 2012;12:50. doi: 10.1186/1472-6947-12-50.
    1. DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med. 1995;333(9):541–549. doi: 10.1056/NEJM199508313330902.
    1. Goodarzi MO, Bryer-Ash M. Metformin revisited: re-evaluation of its properties and role in the pharmacopoeia of modern antidiabetic agents. Diabetes Obes Metab. 2005;7(6):654–665. doi: 10.1111/j.1463-1326.2004.00448.x.
    1. Hermann LS, Karlsson JE, Sjostrand A. Prospective comparative study in NIDDM patients of metformin and glibenclamide with special reference to lipid profiles. Eur J Clin Pharmacol. 1991;41(3):263–265. doi: 10.1007/BF00315441.
    1. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333(9):550–554. doi: 10.1056/NEJM199508313330903.
    1. Nowak A, Czkwianianc E. A contemporary approach to body mass regulation mechanisms. Prz Gastroenterol. 2016;11(2):73–77.
    1. Okamoto A, Yokokawa H, Sanada H, Naito T. Changes in levels of biomarkers associated with adipocyte function and insulin and glucagon kinetics during treatment with dapagliflozin among obese type 2 diabetes mellitus patients. Drugs R D. 2016;16(3):255–261. doi: 10.1007/s40268-016-0137-9.
    1. Scheen AJ, Paquot N. Metabolic effects of SGLT-2 inhibitors beyond increased glucosuria: A review of the clinical evidence. Diabetes Metab. 2014;40(6 Suppl 1):S4–S11. doi: 10.1016/S1262-3636(14)72689-8.
    1. Bonner C, Kerr-Conte J, Gmyr V, Queniat G, Moerman E, Thevenet J, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21(5):512–517. doi: 10.1038/nm.3828.

Source: PubMed

3
Sottoscrivi