MDR-TB treatment as prevention: The projected population-level impact of expanded treatment for multidrug-resistant tuberculosis

Emily A Kendall, Andrew S Azman, Frank G Cobelens, David W Dowdy, Emily A Kendall, Andrew S Azman, Frank G Cobelens, David W Dowdy

Abstract

Background: In 2013, approximately 480,000 people developed active multidrug-resistant tuberculosis (MDR-TB), while only 97,000 started MDR-TB treatment. We sought to estimate the impact of improving access to MDR-TB diagnosis and treatment, under multiple diagnostic algorithm and treatment regimen scenarios, on ten-year projections of MDR-TB incidence and mortality.

Methods: We constructed a dynamic transmission model of an MDR-TB epidemic in an illustrative East/Southeast Asian setting. Using approximate Bayesian computation, we investigated a wide array of potential epidemic trajectories consistent with current notification data and known TB epidemiology.

Results: Despite an overall projected decline in TB incidence, data-consistent simulations suggested that MDR-TB incidence is likely to rise between 2015 and 2025 under continued 2013 treatment practices, although with considerable uncertainty (median 17% increase, 95% Uncertainty Range [UR] -38% to +137%). But if, by 2017, all identified active TB patients with previously-treated TB could be tested for drug susceptibility, and 85% of those with MDR-TB could initiate MDR-appropriate treatment, then MDR-TB incidence in 2025 could be reduced by 26% (95% UR 4-52%) relative to projections under continued current practice. Also expanding this drug-susceptibility testing and appropriate MDR-TB treatment to treatment-naïve as well as previously-treated TB cases, by 2020, could reduce MDR-TB incidence in 2025 by 29% (95% UR 6-55%) compared to continued current practice. If this diagnosis and treatment of all MDR-TB in known active TB cases by 2020 could be implemented via a novel second-line regimen with similar effectiveness and tolerability as current first-line therapy, a 54% (95% UR 20-74%) reduction in MDR-TB incidence compared to current-practice projections could be achieved by 2025.

Conclusions: Expansion of diagnosis and treatment of MDR-TB, even using current sub-optimal second-line regimens, is expected to significantly decrease MDR-TB incidence at the population level. Focusing MDR diagnostic efforts on previously-treated cases is an efficient first-step approach.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Model structure.
Fig 1. Model structure.
Simplified diagram of modeled compartments. Separate compartments for never-treated and previously-treated individuals and for DS and MDR-TB at each stage are included in the model but not shown here. Also not shown: mortality (occurs at an increased rate during active disease) and spontaneous self-cure (can occur from any active disease or treatment compartment).
Fig 2. Model projections for East/Southeast Asian…
Fig 2. Model projections for East/Southeast Asian TB epidemic assuming continuation of current practice.
Simulations are fitted to notification data for Vietnam through year 2013. Median and uncertainty ranges among the data-consistent projections are shown through year 2025, assuming unchanged diagnostic and treatment practices. The model assumes decline over time in the number of transmissions per infectious person-year, and therefore total TB incidence falls (panel A), but the fraction of both new and previously-treated patients who present to care with MDR-TB continues to rise (panel B), and MDR-TB incidence (panel C) and mortality (panel D) also rise until at least 2025 in the majority of data-consistent simulations.
Fig 3. Impact of expanded drug-resistance diagnosis…
Fig 3. Impact of expanded drug-resistance diagnosis and second-line treatment availability.
Under the intervention, use of drug susceptibility testing for previously-treated patients increases linearly from current levels in 2015 to 100% in 2017, and individuals found to have MDR-TB start second-line treatment, with allowance for 15% initial loss to follow up. Median and 95% uncertainty range values of MDR-TB incidence are shown, with continued current practice (gray) and under the intervention of expanded MDR-TB diagnosis and treatment (black with dotted 95% uncertainty range); their values in 2025 indicated numerically on the right. The outcome of this intervention in year 2025 is compared in Fig 4 with outcomes of other modeled interventions.
Fig 4. Impacts of primary and alternative…
Fig 4. Impacts of primary and alternative interventions on multidrug-resistant tuberculosis (MDR-TB) epidemic in 2025.
Drug susceptibility testing is performed either at current levels, or in all retreatment patients implemented (the primary intervention, shown in bold; linear scale-up completed by 2017), or in all patients prior to initial treatment (linear scale-up completed by 2020). Enrollment on appropriate MDR-TB treatment occurs either at current levels, or in 85% of diagnosed patients (allowing typical initial loss to follow up), or in 100% of diagnosed patients. For the “improved second-line regimen”, for MDR-TB patients’ adherence, cure, relapse, and time to non-infectiousness are equivalent to the standard first-line regimen outcomes for drug-susceptible TB patients. Error bars represent 95% uncertainty ranges among model simulations.
Fig 5. Multivariable sensitivity analysis.
Fig 5. Multivariable sensitivity analysis.
Partial rank correlation coefficients > 0 indicate that as the parameter of interest increases (after correction for the other parameters), the projected absolute MDR-TB incidence in 2025 under current practice increases (panel A), or the magnitude of the reduction in MDR-TB incidence under the primary intervention (85% MDR treatment coverage among retreatment patients) increases (panel B). Negative values likewise reflect negative correlation between parameter and output. “Relative rate of decline in MDR strain transmission” refers to the decrease in MDR-TB transmissions per infectious person-time, as DS-TB transmissions decrease to model declining TB incidence (methods are described further in S1 Text).

References

    1. Schnippel K, Rosen S, Shearer K, Martinson N, Long L, Sanne I, et al. Costs of inpatient treatment for multi-drug-resistant tuberculosis in South Africa. Trop Med Int Health TM IH. 2013;18: 109–116. 10.1111/tmi.12018
    1. Falzon D, Jaramillo E, Wares F, Zignol M, Floyd K, Raviglione MC. Universal access to care for multidrug-resistant tuberculosis: an analysis of surveillance data. Lancet Infect Dis. 2013;13: 690–697. 10.1016/S1473-3099(13)70130-0
    1. Global Tuberculosis Report 2014 [Internet]. Geneva: World Health Organization; 2014.
    1. Mayer K, Gazzard B, Zuniga JM, Amico KR, Anderson J, Azad Y, et al. Controlling the HIV Epidemic with Antiretrovirals IAPAC Consensus Statement on Treatment as Prevention and Preexposure Prophylaxis. J Int Assoc Provid AIDS Care JIAPAC. 2013;12: 208–216. 10.1177/2325957413475839
    1. Gosling RD, Okell L, Mosha J, Chandramohan D. The role of antimalarial treatment in the elimination of malaria. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2011;17: 1617–1623.
    1. Reid A, Grant AD, White RG, Dye C, Vynnycky E, Fielding K, et al. Accelerating progress towards tuberculosis elimination: the need for combination treatment and prevention. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2015;19: 5–9.
    1. Weiss P, Chen W, Cook VJ, Johnston JC. Treatment outcomes from community-based drug resistant tuberculosis treatment programs: a systematic review and meta-analysis. BMC Infect Dis. 2014;14: 333 10.1186/1471-2334-14-333
    1. Korenromp EL, Glaziou P, Fitzpatrick C, Floyd K, Hosseini M, Raviglione M, et al. Implementing the global plan to stop TB, 2011-2015—optimizing allocations and the Global Fund’s contribution: a scenario projections study. PloS One. 2012;7: e38816 10.1371/journal.pone.0038816
    1. Wares F, Falzon D. Progress in achieving universal access to care for multidrug- resistant tuberculosis (MDR-TB). Indian J Tuberc. 2014;61: 298–306.
    1. Dye C, Williams BG. Criteria for the control of drug-resistant tuberculosis. Proc Natl Acad Sci. 2000;97: 8180–8185. 10.1073/pnas.140102797
    1. Hoang TTT, Nguyen NV, Dinh SN, Nguyen HB, Cobelens F, Thwaites G, et al. Challenges in detection and treatment of multidrug resistant tuberculosis patients in Vietnam. BMC Public Health. 2015;15: 980 10.1186/s12889-015-2338-5
    1. Shrestha S, Knight GM, Fofana M, Cohen T, White RG, Cobelens F, et al. Drivers and trajectories of resistance to new first-line drug regimens for tuberculosis. Open Forum Infect Dis. 2014;1: ofu073 10.1093/ofid/ofu073
    1. Dowdy DW, Chaisson RE, Maartens G, Corbett EL, Dorman SE. Impact of enhanced tuberculosis diagnosis in South Africa: a mathematical model of expanded culture and drug susceptibility testing. Proc Natl Acad Sci U S A. 2008;105: 11293–11298. 10.1073/pnas.0800965105
    1. Global Health Observatory data repository [Internet]. World Health Organization;
    1. McKay MD, Beckman RJ, Conover WJ. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics. 1979;21: 239.
    1. Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJD. Natural History of Tuberculosis: Duration and Fatality of Untreated Pulmonary Tuberculosis in HIV Negative Patients: A Systematic Review. PLoS One. 2011;6: e17601 10.1371/journal.pone.0017601
    1. Vynnycky E, Fine PE. The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol Infect. 1997;119: 183–201.
    1. Andrews JR, Noubary F, Walensky RP, Cerda R, Losina E, Horsburgh CR. Risk of Progression to Active Tuberculosis Following Reinfection With Mycobacterium tuberculosis. Clin Infect Dis. 2012;54: 784–791. 10.1093/cid/cir951
    1. Horsburgh CR, O’Donnell M, Chamblee S, Moreland JL, Johnson J, Marsh BJ, et al. Revisiting rates of reactivation tuberculosis: a population-based approach. Am J Respir Crit Care Med. 2010;182: 420–425. 10.1164/rccm.200909-1355OC
    1. Fox GJ, Barry SE, Britton WJ, Marks GB. Contact investigation for tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2013;41: 140–156. 10.1183/09031936.00070812
    1. Sloot R, Schim van der Loeff MF, Kouw PM, Borgdorff MW. Risk of tuberculosis after recent exposure. A 10-year follow-up study of contacts in Amsterdam. Am J Respir Crit Care Med. 2014;190: 1044–1052. 10.1164/rccm.201406-1159OC
    1. Corbett EL, Bandason T, Cheung YB, Munyati S, Godfrey-Faussett P, Hayes R, et al. Epidemiology of tuberculosis in a high HIV prevalence population provided with enhanced diagnosis of symptomatic disease. PLoS Med. 2007;4: e22 10.1371/journal.pmed.0040022
    1. Okada K, Onozaki I, Yamada N, Yoshiyama T, Miura T, Saint S, et al. Epidemiological impact of mass tuberculosis screening: a 2-year follow-up after a national prevalence survey. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2012;16: 1619–1624.
    1. Dowdy DW, Basu S, Andrews JR. Is Passive Diagnosis Enough? Am J Respir Crit Care Med. 2013;187: 543–551. 10.1164/rccm.201207-1217OC
    1. Behr MA, Warren SA, Salamon H, Hopewell PC, Ponce de Leon A, Daley CL, et al. Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet. 1999;353: 444–449.
    1. Dye C, Garnett GP, Sleeman K, Williams BG. Prospects for worldwide tuberculosis control under the WHO DOTS strategy. The Lancet. 1998;352: 1886–1891.
    1. Hoa NB, Sy DN, Nhung NV, Tiemersma EW, Borgdorff MW, Cobelens FG. National survey of tuberculosis prevalence in Viet Nam. Bull World Health Organ. 2010;88: 273–280. 10.2471/BLT.09.067801
    1. Global Tuberculosis Report 2013 [Internet]. Geneva: World Health Organization;
    1. Marx FM, Dunbar R, Enarson DA, Williams BG, Warren RM, Spuy van der GD, et al. The Temporal Dynamics of Relapse and Reinfection Tuberculosis After Successful Treatment: A Retrospective Cohort Study. Clin Infect Dis. 2014;58: 1676–1683. 10.1093/cid/ciu186
    1. Menzies D, Benedetti A, Paydar A, Martin I, Royce S, Pai M, et al. Effect of duration and intermittency of rifampin on tuberculosis treatment outcomes: a systematic review and meta-analysis. PLoS Med. 2009;6: e1000146 10.1371/journal.pmed.1000146
    1. Menzies D, Benedetti A, Paydar A, Royce S, Madhukar P, Burman W, et al. Standardized treatment of active tuberculosis in patients with previous treatment and/or with mono-resistance to isoniazid: a systematic review and meta-analysis. PLoS Med. 2009;6: e1000150 10.1371/journal.pmed.1000150
    1. Kruk ME, Schwalbe NR, Aguiar CA. Timing of default from tuberculosis treatment: a systematic review. Trop Med Int Health. 2008;13: 703–12. 10.1111/j.1365-3156.2008.02042.x
    1. Borrell S, Gagneux S. Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis [State of the art]. Int J Tuberc Lung Dis. 2009;13: 1456–1466.
    1. Billington OJ, McHugh TD, Gillespie SH. Physiological Cost of Rifampin Resistance Induced In Vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1999;43: 1866–1869.
    1. Grandjean L, Gilman RH, Martin L, Soto E, Castro B, Lopez S, et al. Transmission of Multidrug-Resistant and Drug-Susceptible Tuberculosis within Households: A Prospective Cohort Study. PLoS Med. 2015;12: e1001843 10.1371/journal.pmed.1001843
    1. Mak A, Thomas A, del Granado M, Zaleskis R, Mouzafarova N, Menzies D. Influence of Multidrug Resistance on Tuberculosis Treatment Outcomes with Standardized Regimens. Am J Respir Crit Care Med. 2008;178: 306–312. 10.1164/rccm.200802-240OC
    1. Palmero DJ, Ambroggi M, Brea A, De Lucas M, Fulgenzi A, Martínez D, et al. Treatment and follow-up of HIV-negative multidrug-resistant tuberculosis patients in an infectious diseases reference hospital, Buenos Aires, Argentina. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2004;8: 778–784.
    1. Holtz TH, Sternberg M, Kammerer S, Laserson KF, Riekstina V, Zarovska E, et al. Time to sputum culture conversion in multidrug-resistant tuberculosis: predictors and relationship to treatment outcome. Ann Intern Med. 2006;144: 650–9.
    1. Millet J-P, Shaw E, Orcau À, Casals M, Miró JM, Caylà JA, et al. Tuberculosis Recurrence after Completion Treatment in a European City: Reinfection or Relapse? PLoS ONE. 2013;8: e64898 10.1371/journal.pone.0064898
    1. Dharmadhikari AS, Mphahlele M, Venter K, Stoltz A, Mathebula R, Masotla T, et al. Rapid impact of effective treatment on transmission of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2014;18: 1019–1025. 10.5588/ijtld.13.0834
    1. Johnston JC, Shahidi NC, Sadatsafavi M, Fitzgerald JM. Treatment outcomes of multidrug-resistant tuberculosis: a systematic review and meta-analysis. PLoS One. 2009;4: e6914 10.1371/journal.pone.0006914
    1. Toczek A, Cox H, du Cros P, Cooke G, Ford N. Strategies for reducing treatment default in drug-resistant tuberculosis: systematic review and meta-analysis [Review article]. Int J Tuberc Lung Dis. 2013;17: 299–307. 10.5588/ijtld.12.0537
    1. Hoa NB, Khanh PH, Chinh NV, Hennig CM. Prescription patterns and treatment outcomes of MDR-TB patients treated within and outside the National Tuberculosis Programme in Pham Ngoc Thach hospital, Viet Nam. Trop Med Int Health. 2014;19: 1076–1081. 10.1111/tmi.12347
    1. Blower S, Dowlatabadi H. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev Rev Int Stat. 1994;62: 229–243.
    1. MacPherson P, Houben RM, Glynn JR, Corbett EL, Kranzer K, MacPherson P, et al. Pre-treatment loss to follow-up in tuberculosis patients in low- and lower-middle-income countries and high-burden countries: a systematic review and meta-analysis. Bull World Health Organ. 2014;92: 126–138. 10.2471/BLT.13.124800
    1. World Health Organization, Stop TB Partnership. The Global Plan to Stop TB 2011–2015: transforming the fight towards elimination of tuberculosis. Geneva: WHO; 2010.
    1. Falzon D, Mirzayev F, Wares F, Baena IG, Zignol M, Linh N, et al. Multidrug-resistant tuberculosis around the world: what progress has been made? Eur Respir J. 2015;45: 150–160. 10.1183/09031936.00101814
    1. Mehra M, Cossrow N, Kambili C, Underwood R, Makkar R, Potluri R. Assessment of tuberculosis burden in China using a dynamic disease simulation model. Int J Tuberc Lung Dis. 2013;17: 1186–1194. 10.5588/ijtld.12.0959
    1. Trauer JM, Denholm JT, McBryde ES. Construction of a mathematical model for tuberculosis transmission in highly endemic regions of the Asia-Pacific. J Theor Biol. 2014;358: 74–84. 10.1016/j.jtbi.2014.05.023
    1. Menzies NA, Cohen T, Lin H-H, Murray M, Salomon JA. Population Health Impact and Cost-Effectiveness of Tuberculosis Diagnosis with Xpert MTB/RIF: A Dynamic Simulation and Economic Evaluation. PLoS Med. 2012;9: e1001347 10.1371/journal.pmed.1001347
    1. Sachdeva KS, Raizada N, Gupta RS, Nair SA, Denkinger C, Paramasivan CN, et al. The Potential Impact of Up-Front Drug Sensitivity Testing on India’s Epidemic of Multi-Drug Resistant Tuberculosis. PLoS ONE. 2015;10: e0131438 10.1371/journal.pone.0131438
    1. Blower SM, Chou T. Modeling the emergence of the “hot zones”: tuberculosis and the amplification dynamics of drug resistance. Nat Med. 2004;10: 1111–1116. 10.1038/nm1102
    1. Cegielski JP, Dalton T, Yagui M, Wattanaamornkiet W, Volchenkov GV, Via LE, et al. Extensive drug resistance acquired during treatment of multidrug-resistant tuberculosis. Clin Infect Dis Off Publ Infect Dis Soc Am. 2014;59: 1049–1063.

Source: PubMed

3
Sottoscrivi