Effectiveness of mechanical treatment with customized insole and minimalist flexible footwear for women with calcaneal spur: randomized controlled trial

Ana Paula Ribeiro, Brenda Luciano de Souza, Silvia Maria Amado João, Ana Paula Ribeiro, Brenda Luciano de Souza, Silvia Maria Amado João

Abstract

Backround: Calcaneal spurs are described as bony outgrowths arising on medial calcaneal, where inappropriate footwear can promote disease progression.

Objective: Investigate the effectiveness of mechanical treatment with customized insole and minimalist flexible footwear during gait training program in women with calcaneal spur.

Methods: Design: A single-blinded, randomized and controlled trial.

Setting: Biomechanics laboratory.

Participants: Forty-three women, 29 with calcaneal spur and 14 control.

Intervention: Gait training program with use of the minimalist flexible footwear (MFG n = 15, age: 48.9 ± 9.4, height: 1.61 ± 0.1, BMI: 32.1 ± 7.0) and customized insole on footwear (COIG n = 14, age: 50.3 ± 5.8, height: 1.62 ± 0.1, BMI: 32.2 ± 4.3) and control (CG n = 14, age: 47.8 ± 8.6, height: 1.63 ± 0.1, BMI: 27.5 ± 4.5), followed of the evaluations: baseline (T0) and after three (T3) and six (T6) months. Duration of the intervention was of the six months consecutive for at least 42 h per week (six hours a day, seven days a week). Outcome primary were calcaneus pain (visual analogue scale), Foot Function Index (FFI), Foot Health Status Questionnaire (FHSQ-Br) and 6-min walk test (6MWT). Secondary was plantar pressure distribution by a pressure platform system during gait and static index foot posture (FPI).

Statistical analysis: analysis of variance for repeated measure and between groups were used to detect treatment-time interactions (α = 5%). Effect size with D Cohen's also was used between T0 and after six (T6) months of intervention.

Results: The MFG and COIG were effective at reducing pain after six months (MFG: 2.5-4.5 CI, p = 0.001; COIG: 1.5-3.5 CI, p = 0.011). The FFI and FHSQ-Br showed improvements with MFG and COIG after T6 (MFG: 13.7-15.4 CI, p = 0.010; COIG: 11.3-15.0 CI, p = 0.001). The 6MWT increased with MFG (589.3-622.7 CI) and COIG (401.3-644.7 CI) and foot pronation was decreased after T3 and T6 MFG (FPI Right: 4.2-5.4 CI; Left: 3.6-5.4 CI) COIG (FPI Right: 3.4-6.8 CI; Left: 3.3-5.7 CI). The contact area reduced on forefoot and rearfoot with MFG and GOIG and midfoot and rearfoot with MFG. Maximum force was reduced on foot with MFG after T3 and T6. The peak pressure was reduced on the forefoot with MFG and COIG and on midfoot and rearfoot with MFG.

Conclusions: The mechanical treatment with customized insole and minimalist flexible footwear during gait training program during six months in women with calcaneal spur reduced the calcaneus pain, increased function and health feet and reduced plantar load on the rearfoot, midfoot and forefoot. However, the footwear alone was more effective than when combined customized insole, given the greater efficacy on clinical and biomechanical aspects.

Trial registration: ClinicalTrials.gov NCT03040557 (date of first registration: 02/02/2017).

Keywords: Calcaneus spur; Foot; Footwear; Gait; Insoles; Pain; Training.

Conflict of interest statement

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publica- tion of this article.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flow Diagram of participants on trial clinical and outcomes analyzed
Fig. 2
Fig. 2
A Baseline of the flexible, minimalist and low-cost footwear; B Flexible, minimalist and low-cost footwear wear after six months of intervention
Fig. 3
Fig. 3
A Baseline of the customized orthopaedic insole, all contact with wedge at the side edge of the heel; B Customized orthopaedic insole, all contact with wedge at the side edge of the heel inserted in flexible, minimalist footwear, and wear after six months of intervention

References

    1. Kirkpatrick J, Yassaie O, Mirjalili SA. The plantar calcaneal spur: a review of anatomy, histology, etiology and key associations. J Anat. 2017;230(6):743–751. doi: 10.1111/joa.12607.
    1. Kumai T, Benjamin M. Heel spur formation and the subcalcaneal enthesis of the plantar fascia. J Rheumatol. 2002;29(9):1957–1964.
    1. Abreu MR, Chung CB, Mendes L, Mohana-Borges A, Trudell D, Resnick D. Plantar calcaneal enthesophytes: new observations regarding sites of origin based on radiographic, MR imaging, anatomic, and paleopathologic analysis. Skeletal Radiol. 2003;32(1):13–21. doi: 10.1007/s00256-002-0585-x.
    1. Caroline C, Kirchengast S. Calcaneal spurs among San and Khoi skeletons. Anthropol Anz. 2015;72(1):107–115. doi: 10.1127/anthranz/2014/0403.
    1. Kullar JS, Randhawa GK, Kullar KK. A study of calcaneal enthesophytes (spurs) in Indian population. Int J Appl Basic Med Res. 2014;4(Suppl 1):S13–S16. doi: 10.4103/2229-516X.140709.
    1. Riepert T, Drechsler T, Urban R, Schild H, Mattern R. The incidence, age dependence and sex distribution of the calcaneal spur. An analysis of its x-ray morphology in 1027 patients of the central European population. Rofo. 1995;162(6):502–5. doi: 10.1055/s-2007-1015925.
    1. Toumi H, Davies R, Mazor M, Coursier R, Best TM, Jennane R, Lespessailles E. Changes in prevalence of calcaneal spurs in men & women: a random population from a trauma clinic. BMC Musculoskelet Disord. 2014;15:87. doi: 10.1186/1471-2474-15-87.
    1. Yung-Hui L, Wei-Hsien H. Effects of shoe inserts and heel height on foot pressure, impact force, and perceived comfort during walking. Appl Ergon. 2005;36(3):355–362. doi: 10.1016/j.apergo.2004.11.001.
    1. Hong WH, Lee YH, Chen HC, Pei YC, Wu CY. Influence of heel height and shoe insert on comfort perception and biomechanical performance of young female adults during walking. Foot Ankle Int. 2005;26(12):1042–1048. doi: 10.1177/107110070502601208.
    1. Zhou B, Zhou Y, Tao X, Yuan C, Tang K. Classification of Calcaneal Spurs and Their Relationship with Plantar Fasciitis. J Foot Ankle Surg. 2015;54(4):594–600. doi: 10.1053/j.jfas.2014.11.009.
    1. Ribeiro AP, Trombini-Souza F, Tessutti V, Rodrigues LF, Sacco IC, João SM. Rearfoot alignment and medial longitudinal arch configurations of runners with symptoms and histories of plantar fasciitis. Clinics. 2011;66(6):1027–1033. doi: 10.1590/S1807-59322011000600018.
    1. Menz HB, Zammit GV, Landorf KB, Munteanu SE. Plantar calcaneal spurs in older people: longitudinal traction or vertical compression? J Foot Ankle Res. 2008;1(1):7. doi: 10.1186/1757-1146-1-7.
    1. Bergmann JN. History and mechanical control of heel spur pain. Clin Podiatr Med Surg. 1990;7(2):243–259.
    1. Lemont H, Ammirati KM, Usen N. A Degenerative Process (Fasciosis) Without Inflammation. JAPMA. 2003;93(3):234–237. doi: 10.7547/87507315-93-3-234.
    1. Ribeiro AP, João SM, Dinato RC, Tessutti VD, Sacco IC. Dynamic Patterns of Forces and Loading Rate in Runners with Unilateral Plantar Fasciitis: A Cross-Sectional Study. PLoS One. 2015;10(9):e0136971. doi: 10.1371/journal.pone.0136971.
    1. League AC. Current concepts review: plantar fasciitis. Foot Ankle Int. 2008;29(3):358–366. doi: 10.3113/FAI.2008.0358.
    1. Muth CC. Plantar Fasciitis. JAMA. 2017;318(4):400. doi: 10.1001/jama.2017.5806.
    1. Pohl MB, Hamil J, Davis IS. Biomechanical and anatomic factors associated with a history of plantar fasciitis in female runners. Clin J Sport Med. 2009;19(5):372–6. doi: 10.1097/JSM.0b013e3181b8c270.
    1. Johal K, Milner S. Plantar fasciitis and the calcaneal spur: fact or fiction? Foot Ankle Surg. 2012;18(1):39–41. doi: 10.1016/j.fas.2011.03.003.
    1. Smith S, Tinley P, Gilheany M, Grills B, Kingsford A. The inferior calcaneal spur anatomical and histological considerations. Foot. 2007;17:25–31. doi: 10.1016/j.foot.2006.10.002.
    1. Irving DB, Cook JL, Young MA, Menz HB. Obesity and pronated foot type may increase the risk of chronic plantar heel pain: a matched case-control study. BMC Musculoskelet Disord. 2007;17(8):41. doi: 10.1186/1471-2474-8-41.
    1. Li J, Muehleman C. Anatomic relationship of heel spur to surrounding soft tissues: greater variability than previously reported. Clin Anat. 2007;20(8):950–955. doi: 10.1002/ca.20548.
    1. McMillan AM, Landorf KB, Barrett JT, Menz HB, Bird AR. Diagnostic imaging for chronic plantar heel pain: a systematic review and meta-analysis. J Foot Ankle Res. 2009;13(2):32. doi: 10.1186/1757-1146-2-32.
    1. Alshami AM, Souvlis T, Coppieters MW. A review of plantar heel pain of neural origin: differential diagnosis and management. Man Ther. 2008;13(2):103–11. doi: 10.1016/j.math.2007.01.014.
    1. Ozdemir H, Söyüncü Y, Ozgörgen M, Dabak K. Effects of changes in heel fat pad thickness and elasticity on heel pain. J Am Podiatr Med Assoc. 2004;94(1):47–52. doi: 10.7547/87507315-94-1-47.
    1. Chundru U, Liebeskind A, Seidelmann F, Fogel J, Franklin P, Beltran J. Plantar fasciitis and calcaneal spur formation are associated with abductor digiti minimi atrophy on MRI of the foot. Skeletal Radiol. 2008;37(6):505–510. doi: 10.1007/s00256-008-0455-2.
    1. Thomas JL, Christensen JC, Kravitz SR, et al. American College of Foot and Ankle Surgeons heel pain committee. The diagnosis and treatment of heel pain: a clinical practice guideline-revision. J Foot Ankle Surg. 2010;49(3Suppl):1–19. doi: 10.1053/j.jfas.2010.01.001.
    1. Schwartz EN, Su J. Plantar Fasciitis: A Concise Review. Perm J. 2014;18(1):e105–7. doi: 10.7812/TPP/13-113.
    1. Chia KK, Suresh S, Kuah A, Ong JL, Phua JM, Seah AL. Comparative trial of the foot pressure patterns between corrective orthotics, formthotics, bone spur pads and flat insoles in patients with chronic plantar fasciitis. Ann Acad Med Singap. 2009;38(10):869–875.
    1. Seligman DA, Dawson DR. Customized heel pads and soft orthotics to treat heel pain and plantar fasciitis. Arch Phys Med Rehabil. 2003;84(10):1564–1567. doi: 10.1016/s0003-9993(03)00363-0.
    1. Gross MT, Byers JM, Krafft JL, Lackey EJ, Melton KM. The impact of custom semirigid foot orthotics on pain and disability for individuals with plantar fasciitis. J Orthop Sports Phys Ther. 2002;32(4):149–157. doi: 10.2519/jospt.2002.32.4.149.
    1. Rasenberg N, Bierma-Zeinstra SMA, Fuit L, Rathleff MS, Dieker A, van Veldhoven P, Bindels PJE, van Middelkoop M. Custom insoles versus sham and GP-led usual care in patients with plantar heel pain: results of the STAP-study - a randomised controlled trial. Br J Sports Med. 2021;55(5):272–278. doi: 10.1136/bjsports-2019-101409.
    1. Coheña-Jiménez M, Pabón-Carrasco M, Pérez Belloso AJ. Comparison between customised foot orthoses and insole combined with the use of extracorporeal shock wave therapy in plantar fasciitis, medium-term follow-up results: a randomised controlled trial. Clin Rehabil. 2021;35(5):740–749. doi: 10.1177/0269215520976619.
    1. Shakoor N, Lidtke RH, Sengupta M, Fogg LF, Block JA. Effects of specialized footwear on joint loads in osteoarthritis of the knee. Arthritis Rheum. 2008;59(9):1214–1220. doi: 10.1002/art.24017.
    1. Shakoor N, Lidtke RH, Wimmer MA, Mikolatis RA, Foucher KC, Thorp LE. Improvement in knee loading after use of specialized footwear for knee osteoarthritis: results of a six-month pilot investigation. Arthritis Rheum Res. 2010;65(5):1282–1289. doi: 10.1002/art.37896.
    1. Shakoor N, Sengupta M, Foucher KC, Wimmer MA, Fogg LF, Block JA. The effects of common footwear on joint loading in osteoarthritis of the knee. Arthritis Care Res (Hoboken) 2010 doi: 10.1002/acr.20165.
    1. Trombini-Souza F, Kimura A, Ribeiro AP, Butugan M, Akashi P, Passaro A, et al. Inexpensive footwear decrease joint loading in elderly women with knee osteoarthritis. Gait Posture. 2011;34(1):126–130. doi: 10.1016/j.gaitpost.2011.03.026.
    1. Trombini-Souza F, Matias AB, Yokota M, Butugan MK, Goldenstein-Schainberg C, Fuller R, Sacco IC. Long-term use of minimal footwear on pain, self-reported function, analgesic intake, and joint loading in elderly women with knee osteoarthritis: A randomized controlled trial. Clin Biomech. 2015;30(10):1194–1201. doi: 10.1016/j.clinbiomech.2015.08.004.
    1. Fong DT, Pang KY, Chung MM, Hung AS, Chan KM. Evaluation of combined prescription of rocker sole shoes and custom-made foot orthoses for the treatment of plantar fasciitis. Clin Biomech. 2012;27(10):1072–1077. doi: 10.1016/j.clinbiomech.2012.08.003.
    1. Wibowo DB, Harahap R, Widodo A, Haryadi GD, Ariyanto M. The effectiveness of raising the heel height of shoes to reduce heel pain in patients with calcaneal spurs. J Phys Ther Sci. 2017;29(12):2068–2074. doi: 10.1589/jpts.29.2068.
    1. Hutchins S, Bowker P, Geary N, Richards J. The biomechanics and clinical efficacy of footwear adapted with rocker profiles–evidence in the literature. Foot (Edinb) 2009;19(3):165–170. doi: 10.1016/j.foot.2009.01.001.
    1. Reints R, Hijmans JM, Burgerhof JGM, Postema K, Verkerke GJ. Effects of flexible and rigid rocker profiles on in-shoe pressure. Gait Posture. 2017;58:287–293. doi: 10.1016/j.gaitpost.2017.08.008.
    1. Beytemür O, Öncü M. The age dependent change in the incidence of calcaneal spur. Acta Orthop Traumatol Turc. 2018;52(5):367–371. doi: 10.1016/j.aott.2018.06.013.
    1. Martinez BR, Staboli IM, Kamonseki DH, Budiman-Mak E, Yi LC. Validity and reliability of the Foot Function Index (FFI) questionnaire Brazilian-Portuguese version. Springerplus. 2016;5(1):1810. doi: 10.1186/s40064-016-3507-4.
    1. Ferreira AFB, Laurindo IMM, Rodrigues PT, Ferraz MB, Kowalski SC, Tanaka C. Brazilian version of the foot health status questionnaire (FHSQ-BR): cross-cultural adaptation and evaluation of measurement properties. Clinics. 2008;63(5):595–600. doi: 10.1590/S1807-59322008000500005.
    1. Hamilton DM, Haennel RG. Validity and reliability of the 6-minute walk test in a cardiac rehabilitation population. J Cardiopulm Rehabil. 2000;20(3):156–164. doi: 10.1097/00008483-200005000-00003.
    1. Redmond AC, Crane YZ, Menz HB. Normative values for the Foot Posture Index. J Foot Ankle Res. 2008;1(1):6. doi: 10.1186/1757-1146-1-6.
    1. Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med (Zagreb) 2021;31(1):010502. doi: 10.11613/BM.2021.010502.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2. Hillsdale (NJ): Eribaum; 1988.
    1. Tong KB. Economic burden of plantar fasciitis treatment in the United States. Am J Orthop. 2010;19(3):165–170. doi: 10.1016/j.foot.2009.01.001.
    1. Cronin NJ, Barrett RS, Carty CP. Long-term use of high-heeled shoes alters the neuromechanics of human walking. J Appl Physiol (1985) 2012;112(6):1054–8. doi: 10.1152/japplphysiol.01402.2011.
    1. Ebbeling CJ, Hamill J, Crussemeyer JA. Lower Extremity Mechanics and Energy Cost of Walking in High-Heeled Shoes. J Orthop Sports Phys Ther. 1994;19(4):190–196. doi: 10.2519/jospt.1994.19.4.190.
    1. Kuyucu E, Koçyiğit F, Erdil M. The association of calcaneal spur length and clinical and functional parameters in plantar fasciitis. Int J Surg. 2015;21:28–31. doi: 10.1016/j.ijsu.2015.06.078.
    1. Ridge ST, Olsen MT, Bruening DA, Jurgensmeier K, Griffin D, Davis IS, Johnson AW. Walking in Minimalist Shoes Is Effective for Strengthening Foot Muscles. Med Sci Sports Exerc. 2019;51(1):104–113. doi: 10.1249/MSS.0000000000001751.

Source: PubMed

3
Sottoscrivi