Duration of antibiotic therapy in critically ill patients: a randomized controlled trial of a clinical and C-reactive protein-based protocol versus an evidence-based best practice strategy without biomarkers

Isabela Borges, Rafael Carneiro, Rafael Bergo, Larissa Martins, Enrico Colosimo, Carolina Oliveira, Saulo Saturnino, Marcus Vinícius Andrade, Cecilia Ravetti, Vandack Nobre, NIIMI – Núcleo Interdisciplinar de Investigação em Medicina Intensiva, Isabela N Borges, Rafael M Carneiro, Rafael Bergo, Larissa N Martins, Enrico A Colosimo, Carolina F Oliveira, Saulo F Saturnino, Marcus Vinícius M Andrade, Cecilia G Ravetti, Vandack Nobre, Isabela Borges, Rafael Carneiro, Rafael Bergo, Larissa Martins, Enrico Colosimo, Carolina Oliveira, Saulo Saturnino, Marcus Vinícius Andrade, Cecilia Ravetti, Vandack Nobre, NIIMI – Núcleo Interdisciplinar de Investigação em Medicina Intensiva, Isabela N Borges, Rafael M Carneiro, Rafael Bergo, Larissa N Martins, Enrico A Colosimo, Carolina F Oliveira, Saulo F Saturnino, Marcus Vinícius M Andrade, Cecilia G Ravetti, Vandack Nobre

Abstract

Background: The rational use of antibiotics is one of the main strategies to limit the development of bacterial resistance. We therefore sought to evaluate the effectiveness of a C-reactive protein-based protocol in reducing antibiotic treatment time in critically ill patients.

Methods: A randomized, open-label, controlled clinical trial conducted in two intensive care units of a university hospital in Brazil. Critically ill infected adult patients were randomly allocated to (i) intervention to receive antibiotics guided by daily monitoring of CRP levels and (ii) control to receive antibiotics according to the best practices for rational use of antibiotics.

Results: One hundred thirty patients were included in the CRP (n = 64) and control (n = 66) groups. In the intention-to-treat analysis, the median duration of antibiotic therapy for the index infectious episode was 7.0 (5.0-8.8) days in the CRP and 7.0 (7.0-11.3) days in the control (p = 0.011) groups. A significant difference in the treatment time between the two groups was identified in the curve of cumulative suspension of antibiotics, with less exposure in the CRP group only for the index infection episode (p = 0.007). In the per protocol analysis, involving 59 patients in each group, the median duration of antibiotic treatment was 6.0 (5.0-8.0) days for the CRP and 7.0 (7.0-10.0) days for the control (p = 0.011) groups. There was no between-group difference regarding the total days of antibiotic exposure and antibiotic-free days.

Conclusions: Daily monitoring of CRP levels may allow early interruption of antibiotic therapy in a higher proportion of patients, without an effect on total antibiotic consumption. The clinical and microbiological relevance of this finding remains to be demonstrated.

Trial registry: ClinicalTrials.gov Identifier: NCT02987790. Registered 09 December 2016.

Keywords: Antibiotic; Antibiotic stewardship; C-reactive protein; Critical illness; Infection; Sepsis.

Conflict of interest statement

The authors have disclosed that they do not have any conflicts of interest.

Figures

Fig. 1
Fig. 1
Decision-making flowchart for antibiotic discontinuation based on CRP levels. ICU, intensive care unit; CRP, C-reactive protein; SOFA, Sequential Organ Failure Assessment
Fig. 2
Fig. 2
Inclusion flow diagram
Fig. 3
Fig. 3
Proportion of patients (%) on antibiotics during the first 14 days of follow-up. p value for comparison of frequency between groups by the chi-square test
Fig. 4
Fig. 4
Cumulative curve of antibiotic suspension. Time-to-event analysis

References

    1. Chastre J, Wolff M, Fagon JY, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. Jama. 2003;290(19):2588–2598. doi: 10.1001/jama.290.19.2588.
    1. Havey TC, Fowler RA, Daneman N. Duration of antibiotic therapy for bacteremia: a systematic review and meta-analysis. Crit Care. 2009;15(6):R267. doi: 10.1186/cc10545.
    1. Eliakim-Raz N, Yahav D, Paul M, Leibovici L. Duration of antibiotic treatment for acute pyelonephritis and septic urinary tract infection-- 7 days or less versus longer treatment: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2013;68(10):2183–2191. doi: 10.1093/jac/dkt177.
    1. Onakpoya IJ, Walker AS, Tan PS, et al. Overview of systematic reviews assessing the evidence for shorter versus longer duration antibiotic treatment for bacterial infections in secondary care. PLoS One. 2018;13(3):e0194858. doi: 10.1371/journal.pone.0194858.
    1. Rattan R, Allen CJ, Sawyer RG, et al. Patients with complicated intra-abdominal infection presenting with sepsis do not require longer duration of antimicrobial therapy. J Am Coll Surg. 2016;222(4):440–446. doi: 10.1016/j.jamcollsurg.2015.12.050.
    1. Tansarli GS, Mylonakis E. Systematic review and meta-analysis of the efficacy of short-course antibiotic treatments for community-acquired pneumonia in adults. Antimicrob Agents Chemother. 2018;62(9):e00635-18.
    1. Vincent JL, Bassetti M, François B, et al. Advances in antibiotic therapy in the critically ill. Crit Care. 2016;20(1):133. doi: 10.1186/s13054-016-1285-6.
    1. Uranga A, Espana PP, Bilbao A, et al. Duration of antibiotic treatment in community-acquired pneumonia: a multicenter randomized clinical trial. JAMA Intern Med. 2016;176(9):1257–1265. doi: 10.1001/jamainternmed.2016.3633.
    1. Klompas M, Li L, Menchaca JT, Gruber S, Epicenters CfDCaP, Program. Ultra-short-course antibiotics for patients with suspected ventilator-associated pneumonia but minimal and stable ventilator settings. Clin Infect Dis 2017;64(7):870–876.
    1. Nora D, Salluh J, Martin-Loeches I, Povoa P. Biomarker-guided antibiotic therapy-strengths and limitations. Ann Transl Med. 2017;5(10):208. doi: 10.21037/atm.2017.04.04.
    1. Nobre V, Harbarth S, Graf JD, Rohner P, Pugin J. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med. 2008;177(5):498–505. doi: 10.1164/rccm.200708-1238OC.
    1. Stolz D, Smyrnios N, Eggimann P, et al. Procalcitonin for reduced antibiotic exposure in ventilator-associated pneumonia: a randomised study. Eur Respir J. 2009;34(6):1364–1375. doi: 10.1183/09031936.00053209.
    1. Bouadma L, Luyt CE, Tubach F, et al. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet. 2010;375(9713):463–474. doi: 10.1016/S0140-6736(09)61879-1.
    1. de Jong E, van Oers JA, Beishuizen A, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16(7):819–827. doi: 10.1016/S1473-3099(16)00053-0.
    1. Wirz Y, Meier MA, Bouadma L, et al. Effect of procalcitonin-guided antibiotic treatment on clinical outcomes in intensive care unit patients with infection and sepsis patients: a patient-level meta-analysis of randomized trials. Crit Care. 2018;22(1):191. doi: 10.1186/s13054-018-2125-7.
    1. Pepper D, Sun J, Rhee C, et al. Procalcitonin-guided antibiotic discontinuation and mortality in critically ill adults. A systematic review and meta-analysis. Chest. 2019;155(6):1109–1118. doi: 10.1016/j.chest.2018.12.029.
    1. Dianti M, Luna CM. Do we need biomarkers for the follow-up and shortening of antibiotic treatment duration? Curr Opin Crit Care. 2018;24(5):361–369. doi: 10.1097/MCC.0000000000000540.
    1. Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care. 2010;14(1):R15. doi: 10.1186/cc8872.
    1. Oliveira CF, Botoni FA, Oliveira CR, et al. Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Crit Care Med. 2013;41(10):2336–2343. doi: 10.1097/CCM.0b013e31828e969f.
    1. Calsavara AJC, Costa PA, Nobre V, Teixeira AL. Factors associated with short and long term cognitive changes in patients with sepsis. Sci Rep. 2018;8(1):4509. doi: 10.1038/s41598-018-22754-3.
    1. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287.
    1. Moher D, Hopewell S, Schulz KF, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869. doi: 10.1136/bmj.c869.
    1. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–383. doi: 10.1016/0021-9681(87)90171-8.
    1. Moreno RP, Metnitz PG, Almeida E, et al. SAPS 3--from evaluation of the patient to evaluation of the intensive care unit. Part 2: development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005;31(10):1345–1355. doi: 10.1007/s00134-005-2763-5.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–829. doi: 10.1097/00003246-198510000-00009.
    1. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control. 1988;16(3):128–140. doi: 10.1016/0196-6553(88)90053-3.
    1. Klein JP, Moeschberger ML. Survival analysis: techniques for censored and truncated data. 2. New York ; London: Springer; 2003.
    1. Kumar A, Ellis P, Arabi Y, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009;136(5):1237–1248. doi: 10.1378/chest.09-0087.
    1. Thomas Z, Bandali F, Sankaranarayanan J, Reardon T, Olsen KM, Network CCPT. A multicenter evaluation of prolonged empiric antibiotic therapy in adult ICUs in the United States. Crit Care Med. 2015;43(12):2527–2534. doi: 10.1097/CCM.0000000000001294.
    1. Singh N, Rogers P, Atwood CW, Wagener MM, Yu VL. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med. 2000;162(2 Pt 1):505–511. doi: 10.1164/ajrccm.162.2.9909095.
    1. D'Agata EM, Magal P, Olivier D, Ruan S, Webb GF. Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration. J Theor Biol. 2007;249(3):487–499. doi: 10.1016/j.jtbi.2007.08.011.
    1. Yusuf E, Van Herendael B, Verbrugghe W, et al. Emergence of antimicrobial resistance to Pseudomonas aeruginosa in the intensive care unit: association with the duration of antibiotic exposure and mode of administration. Ann Intensive Care. 2017;7(1):72. doi: 10.1186/s13613-017-0296-z.
    1. Seligman R, Meisner M, Lisboa TC, et al. Decreases in procalcitonin and C-reactive protein are strong predictors of survival in ventilator-associated pneumonia. Crit Care. 2006;10(5):R125. doi: 10.1186/cc5036.
    1. Lisboa T, Seligman R, Diaz E, Rodriguez A, Teixeira PJ, Rello J. C-reactive protein correlates with bacterial load and appropriate antibiotic therapy in suspected ventilator-associated pneumonia. Crit Care Med. 2008;36(1):166–171. doi: 10.1097/.
    1. Schuetz P, Briel M, Christ-Crain M, et al. Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis. 2012;55(5):651–662. doi: 10.1093/cid/cis464.
    1. Chalmers JD, Singanayagam A, Hill AT. C-reactive protein is an independent predictor of severity in community-acquired pneumonia. Am J Med. 2008;121(3):219–225. doi: 10.1016/j.amjmed.2007.10.033.
    1. Kumar A. Systematic bias in meta-analyses of time to antimicrobial in sepsis studies. Crit Care Med. 2016;44(4):e234–e235. doi: 10.1097/CCM.0000000000001512.

Source: PubMed

3
Sottoscrivi