Overview on the Effects of N-Acetylcysteine in Neurodegenerative Diseases

Giuseppe Tardiolo, Placido Bramanti, Emanuela Mazzon, Giuseppe Tardiolo, Placido Bramanti, Emanuela Mazzon

Abstract

N-acetylcysteine (NAC), which is an acetylated cysteine compound, has aroused scientific interest for decades due to its important medical applications. It also represents a nutritional supplement in the human diet. NAC is a glutathione precursor and shows antioxidant and anti-inflammatory activities. In addition to the uses quoted in the literature, NAC may be considered helpful in therapies to counteract neurodegenerative and mental health diseases. Furthermore, this compound has been evaluated for its neuroprotective potential in the prevention of cognitive aging dementia. NAC is inexpensive, commercially available and no relevant side effects were observed after its administration. The purpose of this paper is to give an overview on the effects and applications of NAC in Parkinson's and Alzheimer's disorders and in neuropathic pain and stroke.

Keywords: Alzheimer’s disease; N-acetylcysteine; Parkinson’s disease; glutathione precursor; neuropathic pain; oxidative stress; stroke.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Structure of the N-acetylcysteine (NAC).

References

    1. Da Costa M., Bernardi J., Costa L., Fiuza T., Brandao R., Ribeiro M.F., Amaral J.D., Rodrigues C.M.P., Pereira M.E. N-acetylcysteine treatment attenuates the cognitive impairment and synaptic plasticity loss induced by streptozotocin. Chem. Biol. Interact. 2017;272:37–46. doi: 10.1016/j.cbi.2017.05.008.
    1. Bavarsad S.R., Harrigan M.R., Alexandrov A.V. N-acetylcysteine (nac) in neurological disorders: Mechanisms of action and therapeutic opportunities. Brain Behav. 2014;4:108–122. doi: 10.1002/brb3.208.
    1. Ooi S.L., Green R., Pak S.C. N-acetylcysteine for the treatment of psychiatric disorders: A review of current evidence. Biomed. Res. Int. 2018;2018:2469486. doi: 10.1155/2018/2469486.
    1. Witschi A., Reddy S., Stofer B., Lauterburg B.H. The systemic availability of oral glutathione. Eur. J. Clin. Pharmacol. 1992;43:667–669. doi: 10.1007/BF02284971.
    1. Vina J., Hems R., Krebs H.A. Maintenance of glutathione content is isolated hepatocyctes. Biochem. J. 1978;170:627–630. doi: 10.1042/bj1700627.
    1. Sjodin K., Nilsson E., Hallberg A., Tunek A. Metabolism of N-acetyl-l-cysteine. Some structural requirements for the deacetylation and consequences for the oral bioavailability. Biochem. Pharmacol. 1989;38:3981–3985. doi: 10.1016/0006-2952(89)90677-1.
    1. Borgstrom L., Kagedal B. Dose dependent pharmacokinetics of N-acetylcysteine after oral dosing to man. Biopharm. Drug Dispos. 1990;11:131–136. doi: 10.1002/bdd.2510110205.
    1. Holdiness M.R. Clinical pharmacokinetics of N-acetylcysteine. Clin. Pharmacokinet. 1991;20:123–134. doi: 10.2165/00003088-199120020-00004.
    1. Lavoie S., Murray M.M., Deppen P., Knyazeva M.G., Berk M., Boulat O., Bovet P., Bush A.I., Conus P., Copolov D., et al. Glutathione precursor, n-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology. 2008;33:2187–2199. doi: 10.1038/sj.npp.1301624.
    1. Neuwelt E.A., Pagel M.A., Hasler B.P., Deloughery T.G., Muldoon L.L. Therapeutic efficacy of aortic administration of N-acetylcysteine as a chemoprotectant against bone marrow toxicity after intracarotid administration of alkylators, with or without glutathione depletion in a rat model. Cancer Res. 2001;61:7868–7874.
    1. Farr S.A., Poon H.F., Dogrukol-Ak D., Drake J., Banks W.A., Eyerman E., Butterfield D.A., Morley J.E. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged samp8 mice. J. Neurochem. 2003;84:1173–1183. doi: 10.1046/j.1471-4159.2003.01580.x.
    1. Samuni Y., Goldstein S., Dean O.M., Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim. Biophys. Acta. 2013;1830:4117–4129. doi: 10.1016/j.bbagen.2013.04.016.
    1. Omara F.O., Blakley B.R., Bernier J., Fournier M. Immunomodulatory and protective effects of N-acetylcysteine in mitogen-activated murine splenocytes in vitro. Toxicology. 1997;116:219–226. doi: 10.1016/S0300-483X(96)03520-2.
    1. Arakawa M., Ito Y. N-acetylcysteine and neurodegenerative diseases: Basic and clinical pharmacology. Cerebellum. 2007;6:308–314. doi: 10.1080/14734220601142878.
    1. Mitchell J.B., Russo A. The role of glutathione in radiation and drug induced cytotoxicity. Br. J. Cancer Suppl. 1987;8:96–104.
    1. Mitchell J.B., Biaglow J.E., Russo A. Role of glutathione and other endogenous thiols in radiation protection. Pharmacol. Ther. 1988;39:269–274. doi: 10.1016/0163-7258(88)90072-1.
    1. Bannai S., Tateishi N. Role of membrane transport in metabolism and function of glutathione in mammals. J. Membrane. Biol. 1986;89:1–8. doi: 10.1007/BF01870891.
    1. Ishige K., Tanaka M., Arakawa M., Saito H., Ito Y. Distinct nuclear factor-kappab/rel proteins have opposing modulatory effects in glutamate-induced cell death in ht22 cells. Neurochem. Int. 2005;47:545–555. doi: 10.1016/j.neuint.2005.07.010.
    1. Sen C.K. Nutritional biochemistry of cellular glutathione. J. Nutr. Biochem. 1997;8:660–672. doi: 10.1016/S0955-2863(97)00113-7.
    1. Meister A. Glutathione metabolism. Methods Enzymol. 1995;251:3–7.
    1. Richman P.G., Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J. Biol. Chem. 1975;250:1422–1426.
    1. Emet S., Memis D., Pamukcu Z. The influence of n-acetyl-l-cystein infusion on cytokine levels and gastric intramucosal ph during severe sepsis. Crit. Care. 2004;8:R172–179. doi: 10.1186/cc2866.
    1. Nascimento M.M., Suliman M.E., Silva M., Chinaglia T., Marchioro J., Hayashi S.Y., Riella M.C., Lindholm B., Anderstam B. Effect of oral N-acetylcysteine treatment on plasma inflammatory and oxidative stress markers in peritoneal dialysis patients: A placebo-controlled study. Periton. Dialysis Int. 2010;30:336–342. doi: 10.3747/pdi.2009.00073.
    1. Paintlia M.K., Paintlia A.S., Contreras M.A., Singh I., Singh A.K. Lipopolysaccharide-induced peroxisomal dysfunction exacerbates cerebral white matter injury: Attenuation by n-acetyl cysteine. Exp. Neurol. 2008;210:560–576. doi: 10.1016/j.expneurol.2007.12.011.
    1. Pajonk F., Riess K., Sommer A., McBride W.H. N-acetyl-l-cysteine inhibits 26s proteasome function: Implications for effects on NF-κB activation. Free Radical Bio. Med. 2002;32:536–543. doi: 10.1016/S0891-5849(02)00743-8.
    1. Oka S., Kamata H., Kamata K., Yagisawa H., Hirata H. N-Acetylcysteine suppresses TNF-induced NF-κB activation through inhibition of IκB kinases. FEBS Lett. 2000;472:196–202. doi: 10.1016/S0014-5793(00)01464-2.
    1. Olive M.F., Cleva R.M., Kalivas P.W., Malcolm R.J. Glutamatergic medications for the treatment of drug and behavioral addictions. Pharmacol. Biochem. Be. 2012;100:801–810. doi: 10.1016/j.pbb.2011.04.015.
    1. Minarini A., Ferrari S., Galletti M., Giambalvo N., Perrone D., Rioli G., Galeazzi G.M. N-acetylcysteine in the treatment of psychiatric disorders: Current status and future prospects. Expert Opin. Drug Metab. Toxicol. 2017;13:279–292. doi: 10.1080/17425255.2017.1251580.
    1. Kantrowitz J.T., Javitt D.C. N-methyl-d-aspartate (nmda) receptor dysfunction or dysregulation: The final common pathway on the road to schizophrenia? Brain Res. Bull. 2010;83:108–121. doi: 10.1016/j.brainresbull.2010.04.006.
    1. Moran M.M., McFarland K., Melendez R.I., Kalivas P.W., Seamans J.K. Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J. Neurosci. 2005;25:6389–6393. doi: 10.1523/JNEUROSCI.1007-05.2005.
    1. Smith L., Tracy D.K., Giaroli G. What future role might n-acetyl-cysteine have in the treatment of obsessive compulsive and grooming disorders?: A systematic review. J. Clin. Psychopharm. 2016;36:57–62. doi: 10.1097/JCP.0000000000000431.
    1. Sattler R., Tymianski M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol. Neurobiol. 2001;24:107–129. doi: 10.1385/MN:24:1-3:107.
    1. Paoletti P., Neyton J. Nmda receptor subunits: Function and pharmacology. Curr. Opin. Pharmacol. 2007;7:39–47. doi: 10.1016/j.coph.2006.08.011.
    1. Paoletti P. Molecular basis of nmda receptor functional diversity. Eur. J. Neurosci. 2011;33:1351–1365. doi: 10.1111/j.1460-9568.2011.07628.x.
    1. Lai T.W., Shyu W.C., Wang Y.T. Stroke intervention pathways: Nmda receptors and beyond. Trends Mol. Med. 2011;17:266–275. doi: 10.1016/j.molmed.2010.12.008.
    1. Moghaddam B., Javitt D. From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology. 2012;37:4–15. doi: 10.1038/npp.2011.181.
    1. Cull-Candy S.G., Leszkiewicz D.N. Role of distinct nmda receptor subtypes at central synapses. Sci. STKE. 2004;2004:re16. doi: 10.1126/stke.2552004re16.
    1. Conn P.J., Pin J.P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. 1997;37:205–237. doi: 10.1146/annurev.pharmtox.37.1.205.
    1. Dingledine R., Borges K., Bowie D., Traynelis S.F. The glutamate receptor ion channels. Pharmacol. Rev. 1999;51:7–61.
    1. D’Angelo E., Rossi P. Integrated regulation of signal coding and plasticity by nmda receptors at a central synapse. Neural Plast. 1998;6:8–16. doi: 10.1155/NP.1998.8.
    1. Baker D.A., Xi Z.X., Shen H., Swanson C.J., Kalivas P.W. The origin and neuronal function of in vivo nonsynaptic glutamate. J. Neurosci. 2002;22:9134–9141. doi: 10.1523/JNEUROSCI.22-20-09134.2002.
    1. Baker D.A., Madayag A., Kristiansen L.V., Meador-Woodruff J.H., Haroutunian V., Raju I. Contribution of cystine-glutamate antiporters to the psychotomimetic effects of phencyclidine. Neuropsychopharmacology. 2008;33:1760–1772. doi: 10.1038/sj.npp.1301532.
    1. Baker D.A., McFarland K., Lake R.W., Shen H., Tang X.C., Toda S., Kalivas P.W. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat. Neurosci. 2003;6:743–749. doi: 10.1038/nn1069.
    1. Gilbert K.R., Aizenman E., Reynolds I.J. Oxidized glutathione modulates n-methyl-d-aspartate- and depolarization-induced increases in intracellular Ca2+ in cultured rat forebrain neurons. Neurosci. Lett. 1991;133:11–14. doi: 10.1016/0304-3940(91)90045-U.
    1. Varga V., Jenei Z., Janaky R., Saransaari P., Oja S.S. Glutathione is an endogenous ligand of rat brain n-methyl-d-aspartate (nmda) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (ampa) receptors. Neurochem. Res. 1997;22:1165–1171. doi: 10.1023/A:1027377605054.
    1. Steullet P., Neijt H.C., Cuenod M., Do K.Q. Synaptic plasticity impairment and hypofunction of nmda receptors induced by glutathione deficit: Relevance to schizophrenia. Neuroscience. 2006;137:807–819. doi: 10.1016/j.neuroscience.2005.10.014.
    1. Berk M., Malhi G.S., Gray L.J., Dean O.M. The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol. Sci. 2013;34:167–177. doi: 10.1016/j.tips.2013.01.001.
    1. Deepmala, Slattery J., Kumar N., Delhey L., Berk M., Dean O., Spielholz C., Frye R. Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci. Biobehav. Rew. 2015;55:294–321. doi: 10.1016/j.neubiorev.2015.04.015.
    1. Agid Y., Ruberg M., Javoy-Agid F., Hirsch E., Raisman-Vozari R., Vyas S., Faucheux B., Michel P., Kastner A., Blanchard V., et al. Are dopaminergic neurons selectively vulnerable to parkinson’s disease? Adv. Neurol. 1993;60:148–164.
    1. Fisone G., Bezard E. Molecular mechanisms of l-dopa-induced dyskinesia. Int. Rev. Neurobiol. 2011;98:95–122.
    1. Jenner P. Molecular mechanisms of l-dopa-induced dyskinesia. Nat. Rev. Neurosci. 2008;9:665–677. doi: 10.1038/nrn2471.
    1. Guttman M., Slaughter P.M., Theriault M.E., DeBoer D.P., Naylor C.D. Parkinsonism in ontario: Increased mortality compared with controls in a large cohort study. Neurology. 2001;57:2278–2282. doi: 10.1212/WNL.57.12.2278.
    1. Veldman B.A., Wijn A.M., Knoers N., Praamstra P., Horstink M.W. Genetic and environmental risk factors in parkinson’s disease. Clin. Neurol. Neurosur. 1998;100:15–26. doi: 10.1016/S0303-8467(98)00009-2.
    1. Martinez M., Hernandez A.I., Martinez N. N-acetylcysteine delays age-associated memory impairment in mice: Role in synaptic mitochondria. Brain Res. 2000;855:100–106. doi: 10.1016/S0006-8993(99)02349-5.
    1. Martinez M., Hernandez A.I., Martinez N., Ferrandiz M.L. Age-related increase in oxidized proteins in mouse synaptic mitochondria. Brain Res. 1996;731:246–248. doi: 10.1016/0006-8993(96)00708-1.
    1. Fitzmaurice P.S., Ang L., Guttman M., Rajput A.H., Furukawa Y., Kish S.J. Nigral glutathione deficiency is not specific for idiopathic parkinson’s disease. Movement Disord. 2003;18:969–976. doi: 10.1002/mds.10486.
    1. Jha N., Jurma O., Lalli G., Liu Y., Pettus E.H., Greenamyre J.T., Liu R.M., Forman H.J., Andersen J.K. Glutathione depletion in pc12 results in selective inhibition of mitochondrial complex i activity. Implications for parkinson’s disease. J. Biol. Chem. 2000;275:26096–26101. doi: 10.1074/jbc.M000120200.
    1. Conway K.A., Rochet J.C., Bieganski R.M., Lansbury P.T., Jr. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science. 2001;294:1346–1349. doi: 10.1126/science.1063522.
    1. Giasson B.I., Duda J.E., Murray I.V., Chen Q., Souza J.M., Hurtig H.I., Ischiropoulos H., Trojanowski J.Q., Lee V.M. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000;290:985–989. doi: 10.1126/science.290.5493.985.
    1. Hsu M., Srinivas B., Kumar J., Subramanian R., Andersen J. Glutathione depletion resulting in selective mitochondrial complex i inhibition in dopaminergic cells is via an no-mediated pathway not involving peroxynitrite: Implications for parkinson’s disease. J. Neurochem. 2005;92:1091–1103. doi: 10.1111/j.1471-4159.2004.02929.x.
    1. Etminan M., Gill S.S., Samii A. Intake of vitamin e, vitamin c, and carotenoids and the risk of parkinson’s disease: A meta-analysis. Lancet Neurol. 2005;4:362–365. doi: 10.1016/S1474-4422(05)70097-1.
    1. Sechi G., Deledda M.G., Bua G., Satta W.M., Deiana G.A., Pes G.M., Rosati G. Reduced intravenous glutathione in the treatment of early parkinson’s disease. Prog. Neuro-Psychoph. 1996;20:1159–1170. doi: 10.1016/S0278-5846(96)00103-0.
    1. Wang X.F., Cynader M.S. Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity. J. Neurosci. 2001;21:3322–3331. doi: 10.1523/JNEUROSCI.21-10-03322.2001.
    1. Banaclocha M.M. Therapeutic potential of N-acetylcysteine in age-related mitochondrial neurodegenerative diseases. Med. Hypotheses. 2001;56:472–477. doi: 10.1054/mehy.2000.1194.
    1. Martinez Banaclocha M. N-acetylcysteine elicited increase in complex i activity in synaptic mitochondria from aged mice: Implications for treatment of parkinson’s disease. Brain Res. 2000;859:173–175. doi: 10.1016/S0006-8993(00)02005-9.
    1. Martinez M., Martinez N., Hernandez A.I., Ferrandiz M.L. Hypothesis: Can N-acetylcysteine be beneficial in parkinson’s disease? Life Sci. 1999;64:1253–1257. doi: 10.1016/S0024-3205(98)00472-X.
    1. Medina S., Martinez M., Hernanz A. Antioxidants inhibit the human cortical neuron apoptosis induced by hydrogen peroxide, tumor necrosis factor alpha, dopamine and beta-amyloid peptide 1-42. Free Radic. Res. 2002;36:1179–1184. doi: 10.1080/107157602100006445.
    1. Banaclocha M.M., Hernandez A.I., Martinez N., Ferrandiz M.L. N-acetylcysteine protects against age-related increase in oxidized proteins in mouse synaptic mitochondria. Brain Res. 1997;762:256–258. doi: 10.1016/S0006-8993(97)00493-9.
    1. Pocernich C.B., La Fontaine M., Butterfield D.A. In-vivo glutathione elevation protects against hydroxyl free radical-induced protein oxidation in rat brain. Neurochem. Int. 2000;36:185–191. doi: 10.1016/S0197-0186(99)00126-6.
    1. Martinez Banaclocha M., Martinez N. N-acetylcysteine elicited increase in cytochrome c oxidase activity in mice synaptic mitochondria. Brain Res. 1999;842:249–251. doi: 10.1016/S0006-8993(99)01819-3.
    1. Offen D., Ziv I., Sternin H., Melamed E., Hochman A. Prevention of dopamine-induced cell death by thiol antioxidants: Possible implications for treatment of parkinson’s disease. Exp. Neurol. 1996;141:32–39. doi: 10.1006/exnr.1996.0136.
    1. Cocco T., Sgobbo P., Clemente M., Lopriore B., Grattagliano I., Di Paola M., Villani G. Tissue-specific changes of mitochondrial functions in aged rats: Effect of a long-term dietary treatment with N-acetylcysteine. Free Radical Biol. Med. 2005;38:796–805. doi: 10.1016/j.freeradbiomed.2004.11.034.
    1. Clark J., Clore E.L., Zheng K., Adame A., Masliah E., Simon D.K. Oral n-acetyl-cysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice. PLoS ONE. 2010;5:e12333. doi: 10.1371/journal.pone.0012333.
    1. Green D.R., Reed J.C. Mitochondria and apoptosis. Science. 1998;281:1309–1312. doi: 10.1126/science.281.5381.1309.
    1. Aoki E., Yano R., Yokoyama H., Kato H., Araki T. Role of nuclear transcription factor kappa b (nf-kappab) for mptp (1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine)-induced apoptosis in nigral neurons of mice. Exp. Mol. Pathol. 2009;86:57–64. doi: 10.1016/j.yexmp.2008.10.004.
    1. Sha D., Chin L.S., Li L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Hum. Mol. Genet. 2010;19:352–363. doi: 10.1093/hmg/ddp501.
    1. Talley A.K., Dewhurst S., Perry S.W., Dollard S.C., Gummuluru S., Fine S.M., New D., Epstein L.G., Gendelman H.E., Gelbard H.A. Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant N-acetylcysteine and the genes bcl-2 and crmA. Mol. Cell. Biol. 1995;15:2359–2366. doi: 10.1128/MCB.15.5.2359.
    1. Bagh M.B., Maiti A.K., Jana S., Banerjee K., Roy A., Chakrabarti S. Quinone and oxyradical scavenging properties of N-acetylcysteine prevent dopamine mediated inhibition of Na+, K+-ATPase and mitochondrial electron transport chain activity in rat brain: Implications in the neuroprotective therapy of parkinson’s disease. Free Radic. Res. 2008;42:574–581. doi: 10.1080/10715760802158430.
    1. Alzheimer’s A. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 2016;12:459–509.
    1. Lahiri D.K., Rogers J.T., Greig N.H., Sambamurti K. Rationale for the development of cholinesterase inhibitors as anti-alzheimer agents. Curr. Pharm. Design. 2004;10:3111–3119. doi: 10.2174/1381612043383331.
    1. Lee H.P., Zhu X., Casadesus G., Castellani R.J., Nunomura A., Smith M.A., Lee H.G., Perry G. Antioxidant approaches for the treatment of Alzheimer’s disease. Expert Rev. Neurother. 2010;10:1201–1208. doi: 10.1586/ern.10.74.
    1. Stahl S.M. The new cholinesterase inhibitors for Alzheimer’s disease, part 2: Illustrating their mechanisms of action. J. Clin. Psychiat. 2000;61:813–814. doi: 10.4088/JCP.v61n1101.
    1. Herholz K. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer’s disease. Eur. J. Nucl. Med. 2008;35:S25–S29. doi: 10.1007/s00259-007-0699-4.
    1. Randall A.D., Witton J., Booth C., Hynes-Allen A., Brown J.T. The functional neurophysiology of the amyloid precursor protein (app) processing pathway. Neuropharmacology. 2010;59:243–267. doi: 10.1016/j.neuropharm.2010.02.011.
    1. Arima K. Ultrastructural characteristics of tau filaments in tauopathies: Immuno-electron microscopic demonstration of tau filaments in tauopathies. Neuropathology. 2006;26:475–483. doi: 10.1111/j.1440-1789.2006.00669.x.
    1. Schwab C., McGeer P.L. Inflammatory aspects of alzheimer disease and other neurodegenerative disorders. JAD. 2008;13:359–369. doi: 10.3233/JAD-2008-13402.
    1. Tiraboschi P., Hansen L.A., Thal L.J., Corey-Bloom J. The importance of neuritic plaques and tangles to the development and evolution of ad. Neurology. 2004;62:1984–1989. doi: 10.1212/01.WNL.0000129697.01779.0A.
    1. Reddy P.H. Mitochondrial dysfunction in aging and Alzheimer’s disease: Strategies to protect neurons. Antioxid. Redox. Sign. 2007;9:1647–1658. doi: 10.1089/ars.2007.1754.
    1. Selkoe D.J. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. JAD. 2001;3:75–80. doi: 10.3233/JAD-2001-3111.
    1. Dahlgren K.N., Manelli A.M., Stine W.B.J., Baker L.K., Krafft G.A., LaDu M.J. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J. Biol. Chem. 2002;277:32046–32053. doi: 10.1074/jbc.M201750200.
    1. Caughey B., Lansbury P.T. Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 2003;26:267–298. doi: 10.1146/annurev.neuro.26.010302.081142.
    1. Fawzi N.L., Okabe Y., Yap E.H., Head-Gordon T. Determining the critical nucleus and mechanism of fibril elongation of the Alzheimer’s abeta(1-40) peptide. J. Mol. Biol. 2007;365:535–550. doi: 10.1016/j.jmb.2006.10.011.
    1. Walsh D.M., Hartley D.M., Condron M.M., Selkoe D.J., Teplow D.B. In vitro studies of amyloid beta-protein fibril assembly and toxicity provide clues to the aetiology of flemish variant (ala692-->gly) Alzheimer’s disease. Biochem. J. 2001;355:869–877. doi: 10.1042/bj3550869.
    1. Drake J., Link C.D., Butterfield D.A. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid beta-peptide (1-42) in a transgenic caenorhabditis elegans model. Neurobiol. Aging. 2003;24:415–420. doi: 10.1016/S0197-4580(02)00225-7.
    1. Lauderback C.M., Hackett J.M., Huang F.F., Keller J.N., Szweda L.I., Markesbery W.R., Butterfield D.A. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: The role of abeta1-42. J. Neurochem. 2001;78:413–416. doi: 10.1046/j.1471-4159.2001.00451.x.
    1. Butterfield D.A., Lauderback C.M. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radical Biol. Med. 2002;32:1050–1060. doi: 10.1016/S0891-5849(02)00794-3.
    1. Butterfield D.A., Poon H.F., St Clair D., Keller J.N., Pierce W.M., Klein J.B., Markesbery W.R. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: Insights into the development of Alzheimer’s disease. Neurobiol. Dis. 2006;22:223–232. doi: 10.1016/j.nbd.2005.11.002.
    1. Pocernich C.B., Lange M.L., Sultana R., Butterfield D.A. Nutritional approaches to modulate oxidative stress in Alzheimer’s disease. Curr. Alzheimer Res. 2011;8:452–469. doi: 10.2174/156720511796391908.
    1. Butterfield D.A., Bader Lange M.L., Sultana R. Involvements of the lipid peroxidation product, hne, in the pathogenesis and progression of Alzheimer’s disease. Biochim. Biophys. Acta. 2010;1801:924–929. doi: 10.1016/j.bbalip.2010.02.005.
    1. Lovell M.A., Markesbery W.R. Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J. Neurosci. Res. 2007;85:3036–3040. doi: 10.1002/jnr.21346.
    1. Hara Y., McKeehan N., Dacks P.A., Fillit H.M. Evaluation of the neuroprotective potential of N-acetylcysteine for prevention and treatment of cognitive aging and dementia. JPAD. 2017;4:201–206.
    1. Koppal T., Drake J., Butterfield D.A. In vivo modulation of rodent glutathione and its role in peroxynitrite-induced neocortical synaptosomal membrane protein damage. Biochim. Biophys. Acta. 1999;1453:407–411. doi: 10.1016/S0925-4439(99)00014-9.
    1. Pocernich C.B., Cardin A.L., Racine C.L., Lauderback C.M., Butterfield D.A. Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: Relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem. Int. 2001;39:141–149. doi: 10.1016/S0197-0186(01)00012-2.
    1. LaFontaine M.A., Geddes J.W., Butterfield D.A. 3-nitropropionic acid-induced changes in bilayer fluidity in synaptosomal membranes: Implications for huntington’s disease. Neurochem. Res. 2002;27:507–511. doi: 10.1023/A:1019852720521.
    1. Fu A.L., Dong Z.H., Sun M.J. Protective effect of N-acetyl-l-cysteine on amyloid beta-peptide-induced learning and memory deficits in mice. Brain Res. 2006;1109:201–206. doi: 10.1016/j.brainres.2006.06.042.
    1. Huang Q., Aluise C.D., Joshi G., Sultana R., St Clair D.K., Markesbery W.R., Butterfield D.A. Potential in vivo amelioration by N-acetyl-l-cysteine of oxidative stress in brain in human double mutant app/ps-1 knock-in mice: Toward therapeutic modulation of mild cognitive impairment. J. Neurosci. Res. 2010;88:2618–2629. doi: 10.1002/jnr.22422.
    1. Estus S., Tucker H.M., van Rooyen C., Wright S., Brigham E.F., Wogulis M., Rydel R.E. Aggregated amyloid-beta protein induces cortical neuronal apoptosis and concomitant “apoptotic” pattern of gene induction. J. Neurosci. 1997;17:7736–7745. doi: 10.1523/JNEUROSCI.17-20-07736.1997.
    1. Hsiao Y.H., Chen P.S., Yeh S.H., Lin C.H., Gean P.W. N-acetylcysteine prevents beta-amyloid toxicity by a stimulatory effect on p35/cyclin-dependent kinase 5 activity in cultured cortical neurons. J. Neurosci. Res. 2008;86:2685–2695. doi: 10.1002/jnr.21710.
    1. Xu Y., Hou X.Y., Liu Y., Zong Y.Y. Different protection of k252a and N-acetyl-l-cysteine against amyloid-beta peptide-induced cortical neuron apoptosis involving inhibition of mlk3-mkk7-jnk3 signal cascades. J. Neurosci. Res. 2009;87:918–927. doi: 10.1002/jnr.21909.
    1. Yan C.Y., Greene L.A. Prevention of pc12 cell death by N-acetylcysteine requires activation of the ras pathway. J. Neurosci. 1998;18:4042–4049. doi: 10.1523/JNEUROSCI.18-11-04042.1998.
    1. Studer R., Baysang G., Brack C. N-acetyl-l-cystein downregulates beta-amyloid precursor protein gene transcription in human neuroblastoma cells. Biogerontology. 2001;2:55–60. doi: 10.1023/A:1010065103073.
    1. Fuller S., Steele M., Munch G. Activated astroglia during chronic inflammation in Alzheimer’s disease--do they neglect their neurosupportive roles? Mutat. Res. 2010;690:40–49. doi: 10.1016/j.mrfmmm.2009.08.016.
    1. Lee M., Cho T., Jantaratnotai N., Wang Y.T., McGeer E., McGeer P.L. Depletion of gsh in glial cells induces neurotoxicity: Relevance to aging and degenerative neurological diseases. FASEB J. 2010;24:2533–2545. doi: 10.1096/fj.09-149997.
    1. Pahan K., Sheikh F.G., Namboodiri A.M., Singh I. N-acetyl cysteine inhibits induction of no production by endotoxin or cytokine stimulated rat peritoneal macrophages, c6 glial cells and astrocytes. Free Radical Biol. Med. 1998;24:39–48. doi: 10.1016/S0891-5849(97)00137-8.
    1. Colloca L., Ludman T., Bouhassira D., Baron R., Dickenson A.H., Yarnitsky D., Freeman R., Truini A., Attal N., Finnerup N.B., et al. Neuropathic pain. Nat. Rev. Dis. Primers. 2017;3:17002. doi: 10.1038/nrdp.2017.2.
    1. Dworkin R.H., O’Connor A.B., Backonja M., Farrar J.T., Finnerup N.B., Jensen T.S., Kalso E.A., Loeser J.D., Miaskowski C., Nurmikko T.J., et al. Pharmacologic management of neuropathic pain: Evidence-based recommendations. Pain. 2007;132:237–251. doi: 10.1016/j.pain.2007.08.033.
    1. Moore R.A., Wiffen P.J., Derry S., Toelle T., Rice A.S. Gabapentin for chronic neuropathic pain and fibromyalgia in adults. Cochrane. DB Syst. Rev. 2014;4:CD007938.
    1. Dworkin R.H., O’Connor A.B., Audette J., Baron R., Gourlay G.K., Haanpaa M.L., Kent J.L., Krane E.J., Lebel A.A., Levy R.M., et al. Recommendations for the pharmacological management of neuropathic pain: An overview and literature update. Mayo Clin. Proc. 2010;85:S3–S14. doi: 10.4065/mcp.2009.0649.
    1. Horst A., Kolberg C., Moraes M.S., Riffel A.P., Finamor I.A., Bello-Klein A., Pavanato M.A., Partata W.A. Effect of N-acetylcysteine on the spinal-cord glutathione system and nitric-oxide metabolites in rats with neuropathic pain. Neurosci. Lett. 2014;569:163–168. doi: 10.1016/j.neulet.2014.03.063.
    1. Horst A., de Souza J.A., Santos M.C.Q., Riffel A.P.K., Kolberg C., Partata W.A. Effects of N-acetylcysteine on spinal cord oxidative stress biomarkers in rats with neuropathic pain. Braz. J. Med. Biol. Res. 2017;50:e6533. doi: 10.1590/1414-431x20176533.
    1. Horst A., de Souza J.A., Santos M.C., Riffel A.P., Kolberg C., Ribeiro M.F., de Fraga L.S., Partata W.A. N-acetylcysteine downregulates phosphorylated p-38 expression but does not reverse the increased superoxide anion levels in the spinal cord of rats with neuropathic pain. Braz. J. Med. Biol. Res. 2017;50:e5801. doi: 10.1590/1414-431x20165801.
    1. Chiechio S., Copani A., Zammataro M., Battaglia G., Gereau R.W.t., Nicoletti F. Transcriptional regulation of type-2 metabotropic glutamate receptors: An epigenetic path to novel treatments for chronic pain. Trends Pharmacol. Sci. 2010;31:153–160. doi: 10.1016/j.tips.2009.12.003.
    1. Varney M.A., Gereau R.W.t. Metabotropic glutamate receptor involvement in models of acute and persistent pain: Prospects for the development of novel analgesics. Curr. Drug Targets: CNS Neurol. Disord. 2002;1:283–296. doi: 10.2174/1568007023339300.
    1. Goudet C., Magnaghi V., Landry M., Nagy F., Gereau R.W.t., Pin J.P. Metabotropic receptors for glutamate and gaba in pain. Brain Res. 2009;60:43–56. doi: 10.1016/j.brainresrev.2008.12.007.
    1. Kalivas P.W. The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 2009;10:561–572. doi: 10.1038/nrn2515.
    1. Bridges R.J., Natale N.R., Patel S.A. System xc− cystine/glutamate antiporter: An update on molecular pharmacology and roles within the cns. Br. J. Pharmacol. 2012;165:20–34. doi: 10.1111/j.1476-5381.2011.01480.x.
    1. Bernabucci M., Notartomaso S., Zappulla C., Fazio F., Cannella M., Motolese M., Battaglia G., Bruno V., Gradini R., Nicoletti F. N-acetyl-cysteine causes analgesia by reinforcing the endogenous activation of type-2 metabotropic glutamate receptors. Mol. Pain. 2012;8:77. doi: 10.1186/1744-8069-8-77.
    1. Li J., Xu L., Deng X., Jiang C., Pan C., Chen L., Han Y., Dai W., Hu L., Zhang G., et al. N-acetyl-cysteine attenuates neuropathic pain by suppressing matrix metalloproteinases. Pain. 2016;157:1711–1723. doi: 10.1097/j.pain.0000000000000575.
    1. Sozbir E., Naziroglu M. Diabetes enhances oxidative stress-induced TRPM2 channel activity and its control by N-acetylcysteine in rat dorsal root ganglion and brain. Metab. Brain Dis. 2016;31:385–393. doi: 10.1007/s11011-015-9769-7.
    1. Tsai W.Y., Tsai R.Y., Liu C.C., Wu J.L., Wong C.S. Sulfasalazine attenuates acl transection and medial menisectomy-induced cartilage destruction by inhibition of cystine/glutamate antiporter. J. Orthop. Res. 2016;34:650–657. doi: 10.1002/jor.23069.
    1. Nishio N., Taniguchi W., Sugimura Y.K., Takiguchi N., Yamanaka M., Kiyoyuki Y., Yamada H., Miyazaki N., Yoshida M., Nakatsuka T. Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating trpa1 and trpv1 channels. Neuroscience. 2013;247:201–212. doi: 10.1016/j.neuroscience.2013.05.023.
    1. Hacimuftuoglu A., Handy C.R., Goettl V.M., Lin C.G., Dane S., Stephens R.L.J. Antioxidants attenuate multiple phases of formalin-induced nociceptive response in mice. Behav. Brain Res. 2006;173:211–216. doi: 10.1016/j.bbr.2006.06.030.
    1. Naik A.K., Tandan S.K., Dudhgaonkar S.P., Jadhav S.H., Kataria M., Prakash V.R., Kumar D. Role of oxidative stress in pathophysiology of peripheral neuropathy and modulation by N-acetyl-l-cysteine in rats. Eur. J. Pain. 2006;10:573–579. doi: 10.1016/j.ejpain.2005.08.006.
    1. Turkmen S., Cekic Gonenc O., Karaca Y., Mentese A., Demir S., Beyhun E., Sahin A., Gunduz A., Yulug E., Turedi S. The effect of ethyl pyruvate and N-acetylcysteine on ischemia-reperfusion injury in an experimental model of ischemic stroke. Am. J. Emerg. Med. 2016;34:1804–1807. doi: 10.1016/j.ajem.2016.06.003.
    1. Sekhon B., Sekhon C., Khan M., Patel S.J., Singh I., Singh A.K. N-acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Res. 2003;971:1–8. doi: 10.1016/S0006-8993(03)02244-3.
    1. Liu Y., Liu W.C., Sun Y., Shen X., Wang X., Shu H., Pan R., Liu C.F., Liu W., Liu K.J., et al. Normobaric hyperoxia extends neuro- and vaso-protection of N-acetylcysteine in transient focal ischemia. Mol. Neurobiol. 2017;54:3418–3427. doi: 10.1007/s12035-016-9932-0.
    1. Wang B., Aw T.Y., Stokes K.Y. The protection conferred against ischemia-reperfusion injury in the diabetic brain by N-acetylcysteine is associated with decreased dicarbonyl stress. Free Radical Biol. Med. 2016;96:89–98. doi: 10.1016/j.freeradbiomed.2016.03.038.
    1. Zhang Z., Yan J., Taheri S., Liu K.J., Shi H. Hypoxia-inducible factor 1 contributes to N-acetylcysteine’s protection in stroke. Free Radical Biol. Med. 2014;68:8–21. doi: 10.1016/j.freeradbiomed.2013.11.007.
    1. Wang Q., Zhang X., Ding Q., Hu B., Xie Y., Li X., Yang Q., Xiong L. Limb remote postconditioning alleviates cerebral reperfusion injury through reactive oxygen species-mediated inhibition of delta protein kinase c in rats. Anesth. Analg. 2011;113:1180–1187. doi: 10.1213/ANE.0b013e31822b885f.
    1. Khan M., Sekhon B., Jatana M., Giri S., Gilg A.G., Sekhon C., Singh I., Singh A.K. Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J. Neurosci. Res. 2004;76:519–527. doi: 10.1002/jnr.20087.
    1. Knuckey N.W., Palm D., Primiano M., Epstein M.H., Johanson C.E. N-acetylcysteine enhances hippocampal neuronal survival after transient forebrain ischemia in rats. Stroke. 1995;26:305–310. doi: 10.1161/01.STR.26.2.305. discussion 311.
    1. Coles L.D., Tuite P.J., Oz G., Mishra U.R., Kartha R.V., Sullivan K.M., Cloyd J.C., Terpstra M. Repeated-dose oral N-acetylcysteine in parkinson’s disease: Pharmacokinetics and effect on brain glutathione and oxidative stress. J. Clin. Pharmacol. 2018;58:158–167. doi: 10.1002/jcph.1008.
    1. Holmay M.J., Terpstra M., Coles L.D., Mishra U., Ahlskog M., Oz G., Cloyd J.C., Tuite P.J. N-acetylcysteine boosts brain and blood glutathione in gaucher and parkinson diseases. Clin. Neuropharmacol. 2013;36:103–106. doi: 10.1097/WNF.0b013e31829ae713.
    1. Monti D.A., Zabrecky G., Kremens D., Liang T.W., Wintering N.A., Cai J., Wei X., Bazzan A.J., Zhong L., Bowen B., et al. N-acetyl cysteine may support dopamine neurons in parkinson’s disease: Preliminary clinical and cell line data. PLoS ONE. 2016;11:e0157602. doi: 10.1371/journal.pone.0157602.
    1. Remington R., Bechtel C., Larsen D., Samar A., Page R., Morrell C., Shea T.B. Maintenance of cognitive performance and mood for individuals with Alzheimer’s disease following consumption of a nutraceutical formulation: A one-year, open-label study. JAD. 2016;51:991–995. doi: 10.3233/JAD-151098.
    1. Remington R., Bechtel C., Larsen D., Samar A., Doshanjh L., Fishman P., Luo Y., Smyers K., Page R., Morrell C., et al. A phase ii randomized clinical trial of a nutritional formulation for cognition and mood in Alzheimer’s disease. JAD. 2015;45:395–405. doi: 10.3233/JAD-142499.

Source: PubMed

3
Sottoscrivi