The effect of omega-3 fatty acids on a biomarker of head trauma in NCAA football athletes: a multi-site, non-randomized study

Jeffery L Heileson, Anthony J Anzalone, Aaron F Carbuhn, Andrew T Askow, Jason D Stone, Stephanie M Turner, Lyn M Hillyer, David W L Ma, Joel A Luedke, Andrew R Jagim, Jonathan M Oliver, Jeffery L Heileson, Anthony J Anzalone, Aaron F Carbuhn, Andrew T Askow, Jason D Stone, Stephanie M Turner, Lyn M Hillyer, David W L Ma, Joel A Luedke, Andrew R Jagim, Jonathan M Oliver

Abstract

Background: American-style football (ASF) athletes are at risk for cardiovascular disease (CVD) and exhibit elevated levels of serum neurofilament light (Nf-L), a biomarker of axonal injury that is associated with repetitive head impact exposure over the course of a season of competition. Supplementation with the w-3 fatty acid (FA) docosahexaenoic acid (DHA) attenuates serum Nf-L elevations and improves aspects of CVD, such as the omega-3 index (O3I). However, the effect of combining the w-3 FA eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) with DHA on, specifically, serum Nf-L in ASF athletes is unknown. Therefore, this study assessed the effect of supplemental w-3 FA (EPA+DPA+DHA) on serum Nf-L, plasma w-3 FAs, the O3I, and surrogate markers of inflammation over the course of a season.

Methods: A multi-site, non-randomized design, utilizing two American football teams was employed. One team (n = 3 1) received supplementation with a highly bioavailablew-3 FA formulation (2000mg DHA, 560mg EPA, 320mg DPA, Mindset®, Struct Nutrition, Missoula, MT) during pre-season and throughout the regular season, while the second team served as the control (n = 35) and did not undergo supplementation. Blood was sampled at specific times throughout pre- and regular season coincident w ith changes in intensity, physical contact, and changes in the incidence and severity of head impacts. Group differences were determined via a mixed-model between-within subjects ANOVA. Effect sizes were calculated using Cohen's dfor all between-group differences. Significance was set a priori at p< .05.

Results: Compared to the control group, ASF athletes in the treatment group experienced large increases in plasma EPA (p < .001, d = 1.71) and DHA (p < .001, d = 2.10) which contributed to increases in the O3I (p < .001, d = 2.16) and the EPA:AA ratio (p = .001, d = 0.83) and a reduction in the w-6: w-3 ratio (p < .001, d = 1.80). w-3 FA supplementation attenuated elevations in Nf-L (p = .024). The control group experienced a significant increase in Nf-L compared to baseline at several measurement time points (T2, T3, and T4 [p range < .001 - .005, drange = 0.59-0.85]).

Conclusions: These findings suggest a cardio- and neuroprotective effect of combined EPA+DPA+DHA w-3 FA supplementation in American-style football athletes.

Trial registration: This trial was registered with the ISRCTN registry ( ISRCTN90306741 ).

Keywords: American Football; Brain; Concussion; Docosahexaenoic Acid; Eicosapentaenoic Acid; Neurofilament Light.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
CONSORT diagram
Fig. 2
Fig. 2
Study timeline and blood sampling schedule for each team
Fig. 3
Fig. 3
Effect of ω-3 fatty acid (FA) supplementation from baseline (T1) to the end of season (T6) on proportion (A) eicosapentaenoic acid (EPA), B docosahexaenoic acid (DHA), C docosapentaenoic acid (DPA), D arachidonic acid (AA) of total plasma fatty acids; *indicates a significant difference from baseline (p < .05); †indicates a significant difference between groups (p < .01). All data are mean ± SD
Fig. 4
Fig. 4
Individual changes in the Omega-3 Index (O3I) in the treatment (n = 30) and control (n = 35) groups during a NCAA football season. The solid lines indicate the cutoff values for low- and high-risk categories. Values < 4 % are high-risk and values > 8 % are low-risk. Red blood cell O3I was calculated from plasma using a validated equation [48]. *indicates a significant difference compared to baseline (p < .001); †indicates a significant difference between groups (p < .001)
Fig. 5
Fig. 5
Effect of ω-3 fatty acid (FA) supplementation from baseline (T1) to the end of season (T6) on the (A) ω-6:ω-3 ratio, B eicosapentaenoic acid (EPA):arachidonic acid (AA) ratio; *indicates a significant difference from baseline (p < .001); †indicates a significant difference between groups (p < .001). All data are mean ± SD
Fig. 6
Fig. 6
Effect of ω-3 fatty acid (FA) supplementation on serum neurofilament light (Nf-L; % change from baseline) in the control and treatment teams. *indicates a significant difference compared to baseline (p < .05); †indicates a significant difference between groups (p < .05). All data are mean (± SE)
Fig. 7
Fig. 7
Effect of supplemental ω-3 fatty acids on serum neurofilament light (Nf-L; % change from baseline) in control and treatment teams in athletes categorized as starters. *indicates a significant difference compared to baseline (p < .05). All data are mean (± SE)

References

    1. Kim JH, Zafonte R, Pascuale-Leon A, Nadler LM, Weisskopf M, Speizer FE, Taylor HA, Baggish AL. American-Style Football and Cardiovascular Health. J Am Heart Assoc. 2018;7(8):e008620. 10.1161/JAHA.118.008620.
    1. Weiner RB, Wang F, Isaacs SK, Malhotra R, Berkstresser B, Kim JH, et al. Blood pressure and left ventricular hypertrophy during American-style football participation. Circulation. 2013;128:524–31. doi: 10.1161/CIRCULATIONAHA.113.003522.
    1. Crouse SF, White S, Erwin JP, Meade TH, Martin SE, Oliver JM, et al. Echocardiographic and blood pressure characteristics of first-year collegiate American-style football players. Am J Cardiol. 2016;117:131–4. doi: 10.1016/j.amjcard.2015.09.049.
    1. Kim JH, Hollowed C, Liu C, Al-Badri A, Alkhoder A, Dommisse M, et al. Weight gain, hypertension, and the emergence of a maladaptive cardiovascular phenotype among US football players. JAMA Cardiol. 2019;4:1221–9.
    1. Norton K, Olds T. Morphological evolution of athletes over the 20th century: causes and consequences. Sports Med. 2001;31:763–83. doi: 10.2165/00007256-200131110-00001.
    1. Chang AY, FitzGerald SJ, Cannaday J, Zhang S, Patel A, Palmer MD, et al. Cardiovascular risk factors and coronary atherosclerosis in retired National Football League players. Am J Cardiol. 2009;104:805–11. doi: 10.1016/j.amjcard.2009.05.008.
    1. Nocella C, Cammisotto V, Pigozzi F, Borrione P, Fossati C, D’Amico A, et al. Impairment between oxidant and antioxidant systems: short- and long-term implications for athletes’ health. Nutrients. 2019;11:1353.
    1. Lust CAC, Mountjoy M, Robinson LE, Oliver JM, Ma DWL. Sports-related concussions and subconcussive impacts in athletes: incidence, diagnosis, and the emerging role of EPA and DHA. Appl Physiol Nutr Metab. 2020;45:886–92.
    1. Kuzminski SJ, Clark MD, Fraser MA, Haswell CC, Morey RA, Liu C, et al. White matter changes related to subconcussive impact frequency during a single season of high school football. AJNR Am J Neuroradiol. 2018;39:245–51. doi: 10.3174/ajnr.A5489.
    1. Slobounov SM, Walter A, Breiter HC, Zhu DC, Bai X, Bream T, et al. The effect of repetitive subconcussive collisions on brain integrity in collegiate football players over a single football season: a multi-modal neuroimaging study. Neuroimage Clin. 2017;14:708–18. doi: 10.1016/j.nicl.2017.03.006.
    1. Alosco ML, Koerte IK, Tripodis Y, Mariani M, Chua AS, Jarnagin J, et al. White matter signal abnormalities in former National Football League players. Alzheimers Dement (Amst) 2018;10:56–65. doi: 10.1016/j.dadm.2017.10.003.
    1. Asselin PD, Gu Y, Merchant-Borna K, Abar B, Wright DW, Qiu X, et al. Spatial regression analysis of MR diffusion reveals subject-specific white matter changes associated with repetitive head impacts in contact sports. Sci Rep. 2020;10:13606.
    1. Bazarian JJ, Zhu T, Zhong J, Janigro D, Rozen E, Roberts A, et al. Persistent, long-term cerebral white matter changes after sports-related repetitive head impacts. PLoS One. 2014;9:e94734.
    1. Abbas K, Shenk TE, Poole VN, Breedlove EL, Leverenz LJ, Nauman EA, et al. Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study. Brain Connect. 2015;5:91–101. doi: 10.1089/brain.2014.0279.
    1. Abbas K, Shenk TE, Poole VN, Robinson ME, Leverenz LJ, Nauman EA, et al. Effects of repetitive sub-concussive brain injury on the functional connectivity of Default Mode Network in high school football athletes. Dev Neuropsychol. 2015;40:51–6. doi: 10.1080/87565641.2014.990455.
    1. Talavage TM, Nauman EA, Breedlove EL, Yoruk U, Dye AE, Morigaki KE, et al. Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma. 2014;31:327–38. doi: 10.1089/neu.2010.1512.
    1. Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr. 2012;3:1–7. doi: 10.3945/an.111.000893.
    1. Harris WS, Von Schacky C. The Omega-3 Index: a new risk factor for death from coronary heart disease? Prev Med. 2004;39:212–20. doi: 10.1016/j.ypmed.2004.02.030.
    1. Fenton JI, Gurzell EA, Davidson EA, Harris WS. Red blood cell PUFAs reflect the phospholipid PUFA composition of major organs. Prostaglandins Leukot Essent Fatty Acids. 2016;112:12–23. doi: 10.1016/j.plefa.2016.06.004.
    1. Harris WS, Tintle NL, Imamura F, Qian F, Korat AVA, Marklund M, et al. Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies. Nat Commun. 2021;12:2329. doi: 10.1038/s41467-021-22370-2.
    1. Ritz PP, Rogers MB, Zabinsky JS, Hedrick VE, Rockwell JA, Rimer EG, et al. Dietary and biological assessment of the omega-3 status of collegiate athletes: a cross-sectional analysis. PLoS ONE. 2020;15:e0228834. doi: 10.1371/journal.pone.0228834.
    1. Anzalone A, Carbuhn A, Jones L, Gallop A, Smith A, Johnson P, et al. The omega-3 index in National Collegiate Athletic Association Division I collegiate football athletes. J Athl Train. 2019;54:7–11. doi: 10.4085/1062-6050-387-18.
    1. Burdge GC, Calder PC. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev. 2005;45:581–97. doi: 10.1051/rnd:2005047.
    1. Brenna JT. Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Curr Opin Clin Nutr Metab Care. 2002;5:127–32. doi: 10.1097/00075197-200203000-00002.
    1. Curfman G. Do omega-3 fatty acids benefit health? JAMA. 2020;324:2280–1. doi: 10.1001/jama.2020.22898.
    1. Bernasconi AA, Wiest MM, Lavie CJ, Milani RV, Laukkanen JA. Effect of omega-3 dosage on cardiovascular outcomes: an updated meta-analysis and meta-regression of interventional trials. Mayo Clin Proc. 2021;96:304-13.
    1. Lombardi M, Chiabrando JG, Vescovo GM, Bressi E, Del Buono MG, Carbone S, et al. Impact of different doses of omega-3 fatty acids on cardiovascular outcomes: a pairwise and network meta-analysis. Curr Atheroscler Rep. 2020;22:1-10.
    1. Preston Mason R. New insights into mechanisms of action for omega-3 fatty acids in atherothrombotic cardiovascular disease. Curr Atheroscler Rep. 2019;21:1-11.
    1. So J, Wu D, Lichtenstein AH, Tai AK, Matthan NR, Maddipati KR, et al. EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: a randomized, double-blind, crossover study. Atherosclerosis. 2021;315:90-8.
    1. Innes JK, Calder PC. The differential effects of eicosapentaenoic acid and docosahexaenoic acid on cardiometabolic risk factors: a systematic review. Int J Mol Sci. 2018;19:532. doi: 10.3390/ijms19020532.
    1. Rissanen T, Voutilainen S, Nyyssönen K, Lakka TA, Salonen JT. Fish oil-derived fatty acids, docosahexaenoic acid and docosapentaenoic acid, and the risk of acute coronary events: the Kuopio ischaemic heart disease risk factor study. Circulation. 2000;102:2677–9. doi: 10.1161/01.CIR.102.22.2677.
    1. Miura K, Hughes MCB, Ungerer JP, Green AC. Plasma eicosapentaenoic acid is negatively associated with all-cause mortality among men and women in a population-based prospective study. Nutr Res. 2016;36:1202–9. doi: 10.1016/j.nutres.2016.09.006.
    1. Zhu W, Ding Y, Kong W, Li T, Chen H. Docosahexaenoic acid (DHA) provides neuroprotection in traumatic brain injury models via activating Nrf2-ARE signaling. Inflammation. 2018;41:1182–93. doi: 10.1007/s10753-018-0765-z.
    1. Zhu W, Cui G, Li T, Chen H, Zhu J, Ding Y, et al. Docosahexaenoic acid protects traumatic brain injury by regulating NOX2 generation via Nrf2 signaling pathway. Neurochem Res. 2020;45:1839–50. doi: 10.1007/s11064-020-03078-z.
    1. Bailes JE, Mills JD. Docosahexaenoic acid reduces traumatic axonal injury in a rodent head injury model. J Neurotrauma. 2010;27:1617–24. doi: 10.1089/neu.2009.1239.
    1. Mills JD, Hadley K, Bailes JE. Dietary supplementation with the omega-3 fatty acid docosahexaenoic acid in traumatic brain injury. Neurosurgery. 2011;68:474–81. doi: 10.1227/NEU.0b013e3181ff692b.
    1. Pu H, Jiang X, Wei Z, Hong D, Hassan S, Zhang W, et al. Repetitive and prolonged omega-3 fatty acid treatment after traumatic brain injury enhances long-term tissue restoration and cognitive recovery. Cell Transplant. 2017;26:555–69. doi: 10.3727/096368916X693842.
    1. Wu A, Ying Z, Gomez-Pinilla F. Dietary strategy to repair plasma membrane after brain trauma: implications for plasticity and cognition. Neurorehabil Neural Repair. 2014;28:75–84. doi: 10.1177/1545968313498650.
    1. Desai A, Kevala K, Kim H-Y. Depletion of brain docosahexaenoic acid impairs recovery from traumatic brain injury. PLoS ONE. 2014;9:e86472. doi: 10.1371/journal.pone.0086472.
    1. Russell KL, Berman NEJ, Levant B. Low brain DHA content worsens sensorimotor outcomes after TBI and decreases TBI-induced Timp1 expression in juvenile rats. Prostaglandins Leukot Essent Fatty Acids. 2013;89:97–105. doi: 10.1016/j.plefa.2013.05.004.
    1. Neselius S, Brisby H, Theodorsson A, Blennow K, Zetterberg H, Marcusson J. CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma. PLoS One. 2012;7:e33606. doi: 10.1371/journal.pone.0033606.
    1. Shahim P, Zetterberg H, Tegner Y, Blennow K. Serum neurofilament light as a biomarker for mild traumatic brain injury in contact sports. Neurology. 2017;88:1788–94. doi: 10.1212/WNL.0000000000003912.
    1. Siedler DG, Chuah MI, Kirkcaldie MTK, Vickers JC, King AE. Diffuse axonal injury in brain trauma: insights from alterations in neurofilaments. Front Cell Neurosci. 2014;8:429. doi: 10.3389/fncel.2014.00429.
    1. Oliver JM, Jones MT, Kirk KM, Gable DA, Repshas JT, Johnson TA, et al. Serum neurofilament light in American football athletes over the course of a season. J Neurotrauma. 2016;33:1784–9. doi: 10.1089/neu.2015.4295.
    1. Oliver JM, Anzalone AJ, Stone JD, Turner SM, Blueitt D, Garrison JC, et al. Fluctuations in blood biomarkers of head trauma in NCAA football athletes over the course of a season. J Neurosurg. 2019;130:1655-62.
    1. Oliver JM, Jones MT, Kirk KM, Gable DA, Repshas JT, Johnson TA, et al. Effect of docosahexaenoic acid on a biomarker of head trauma in American football. Med Sci Sports Exerc. 2016;48:974–82. doi: 10.1249/MSS.0000000000000875.
    1. Dyall SC. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci. 2015;7:52. doi: 10.3389/fnagi.2015.00052.
    1. Harris WS, Del Gobbo L, Tintle NL. The Omega-3 Index and relative risk for coronary heart disease mortality: Estimation from 10 cohort studies. Atherosclerosis. 2017;262:51–4. doi: 10.1016/j.atherosclerosis.2017.05.007.
    1. Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 2008;233:674–88. doi: 10.3181/0711-MR-311.
    1. Nelson JR, Raskin S. The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgrad Med. 2019;131:268–77. doi: 10.1080/00325481.2019.1607414.
    1. Cohen J. Statistical power analysis for the behavioral sciences. 2. Hillsdale: Lawrence Erlbaum; 1998.
    1. Arterburn LM, Hall EB, Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr. 2006;83:1467S–1476S. doi: 10.1093/ajcn/83.6.1467S.
    1. Mori TA, Burke V, Puddey IB, Watts GF, O’Neal DN, Best JD, et al. Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am J Clin Nutr. 2000;71:1085–94. doi: 10.1093/ajcn/71.5.1085.
    1. Metherel AH, Irfan M, Klingel SL, Mutch DM, Bazinet RP. Compound-specific isotope analysis reveals no retroconversion of DHA to EPA but substantial conversion of EPA to DHA following supplementation: a randomized control trial. Am J Clin Nutr. 2019;110:823–31. doi: 10.1093/ajcn/nqz097.
    1. Metherel AH, Bazinet RP. Updates to the n-3 polyunsaturated fatty acid biosynthesis pathway: DHA synthesis rates, tetracosahexaenoic acid and (minimal) retroconversion. Prog Lipid Res. 2019;76:101008. doi: 10.1016/j.plipres.2019.101008.
    1. Guo X-F, Tong W-F, Ruan Y, Sinclair AJ, Li D. Different metabolism of EPA, DPA and DHA in humans: a double-blind cross-over study. Prostaglandins Leukot Essent Fatty Acids. 2020;158:102033. doi: 10.1016/j.plefa.2019.102033.
    1. Davinelli S, Intrieri M, Corbi G, Scapagnini G. Metabolic indices of polyunsaturated fatty acids: current evidence, research controversies, and clinical utility. Crit Rev Food Sci Nutr. 2021;61:259–74. doi: 10.1080/10408398.2020.1724871.
    1. Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta. 2015;1851:469–84. doi: 10.1016/j.bbalip.2014.08.010.
    1. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56:365–79. doi: 10.1016/S0753-3322(02)00253-6.
    1. Harris WS. The Omega-6:Omega-3 ratio: a critical appraisal and possible successor. Prostaglandins Leukot Essent Fatty Acids. 2018;132:34–40. doi: 10.1016/j.plefa.2018.03.003.
    1. Rubin LH, Tierney R, Kawata K, Wesley L, Lee JH, Blennow K, et al. NFL blood levels are moderated by subconcussive impacts in a cohort of college football players. Brain Inj. 2019;33:456–62. doi: 10.1080/02699052.2019.1565895.
    1. Antonio J, Cabrera D, Knafo S, Thomas J, Peacock C, Tartar J. Neurofilament light (NFL) in division II female soccer players: a potential biomarker for brain trauma. JEPonline. 2021;24:6.
    1. Wirsching A, Chen Z, Bevilacqua ZW, Huibregtse ME, Kawata K. Association of acute increase in plasma neurofilament light with repetitive subconcussive head impacts: a pilot randomized control trial. J Neurotrauma. 2019;36:548–53.
    1. Oliver JM, Anzalone AJ, Turner SM. Protection before impact: the potential neuroprotective role of nutritional supplementation in sports-related head trauma. Sports Med. 2018;48:39–52. doi: 10.1007/s40279-017-0847-3.
    1. Lewis NA, Daniels D, Calder PC, Castell LM, Pedlar CR. Are there benefits from the use of fish oil supplements in athletes? A systematic review. Adv Nutr. 2020;11:1300–14. doi: 10.1093/advances/nmaa050.
    1. Heileson JL, Funderburk LK. The effect of fish oil supplementation on the promotion and preservation of lean body mass, strength, and recovery from physiological stress in young, healthy adults: a systematic review. Nutr Rev. 2020;78:1001–14. doi: 10.1093/nutrit/nuaa034.

Source: PubMed

3
Sottoscrivi