Heterogeneity of Metabolic Defects in Type 2 Diabetes and Its Relation to Reactive Oxygen Species and Alterations in Beta-Cell Mass

Andris Elksnis, Mats Martinell, Olof Eriksson, Daniel Espes, Andris Elksnis, Mats Martinell, Olof Eriksson, Daniel Espes

Abstract

Type 2 diabetes (T2D) is a complex and heterogeneous disease which affects millions of people worldwide. The classification of diabetes is at an interesting turning point and there have been several recent reports on sub-classification of T2D based on phenotypical and metabolic characteristics. An important, and perhaps so far underestimated, factor in the pathophysiology of T2D is the role of oxidative stress and reactive oxygen species (ROS). There are multiple pathways for excessive ROS formation in T2D and in addition, beta-cells have an inherent deficit in the capacity to cope with oxidative stress. ROS formation could be causal, but also contribute to a large number of the metabolic defects in T2D, including beta-cell dysfunction and loss. Currently, our knowledge on beta-cell mass is limited to autopsy studies and based on comparisons with healthy controls. The combined evidence suggests that beta-cell mass is unaltered at onset of T2D but that it declines progressively. In order to better understand the pathophysiology of T2D, to identify and evaluate novel treatments, there is a need for in vivo techniques able to quantify beta-cell mass. Positron emission tomography holds great potential for this purpose and can in addition map metabolic defects, including ROS activity, in specific tissue compartments. In this review, we highlight the different phenotypical features of T2D and how metabolic defects impact oxidative stress and ROS formation. In addition, we review the literature on alterations of beta-cell mass in T2D and discuss potential techniques to assess beta-cell mass and metabolic defects in vivo.

Keywords: beta-cell; beta-cell mass; diabetes classification; imaging; oxygen stress; positron emission tomography; reactive oxygen species; type 2 diabetes.

Figures

FIGURE 1
FIGURE 1
Proportions of diabetes subtypes by (A) the current classification, (B) subtyping of type 2 diabetes by Li et al. (2015) and (C) cluster classification by Ahlqvist et al. (2018) SAID (severe auto-immune diabetes), SIDD (severe insulin deficient diabetes), SIRD (severe insulin resistant diabetes), MOD (mild obestity-related diabetes) and MARD (mild age-related diabetes).
FIGURE 2
FIGURE 2
Illustration of the possible role of NOX activation in the development of beta-cell failure, hyperglycemia, and diabetes. Metabolic dysregulation leading to hyperactivity in the NOX-enzymes results in excessive ROS production and oxidative stress. This increased oxidative stress may subsequently be responsible for beta-cell failure, which in turn contributes to increased metabolic dysregulation. Various other factors may also influence these steps in different ways. For instance, diet can contribute to increased oxidative stress directly by containing excessive AGEs, or indirectly by contributing to the metabolic dysregulation. Inhibition of the NOX enzymes seems to be a promising solution for breaking this deleterious cycle.

References

    1. Abdo A. A., Ackermann M., Ajello M., Atwood W. B., Baldini L., Ballet J., et al. (2010). Gamma-ray emission concurrent with the nova in the symbiotic binary V407 Cygni. Science 329 817–821. 10.1126/science.1192537
    1. Aggarwal R., Ringold S., Khanna D., Neogi T., Johnson S. R., Miller A., et al. (2015). Distinctions between diagnostic and classification criteria? Arthritis Care Res. 67 891–897. 10.1002/acr.22583
    1. Ahlqvist E., Storm P., Käräjämäki A., Martinell M., Dorkhan M., Carlsson A., et al. (2018). Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6 361–369. 10.1016/S2213-8587(18)30051-2
    1. Ahmed Alfar E., Kirova D., Konantz J., Birke S., Mansfeld J., Ninov N. (2017). Distinct levels of reactive oxygen species coordinate metabolic activity with beta-cell mass plasticity. Sci. Rep. 7:3994. 10.1038/s41598-017-03873-9
    1. American Diabetes Association (2009). Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Suppl. 1), S62–S67. 10.2337/dc09-S062
    1. Aoki C., Suzuki K., Yanagi K., Satoh H., Niitani M., Aso Y. (2012). Miglitol, an anti-diabetic drug, inhibits oxidative stress-induced apoptosis and mitochondrial ROS over-production in endothelial cells by enhancement of AMP-activated protein kinase. J. Pharmacol. Sci. 120 121–128. 10.1254/jphs.12108FP
    1. Bell E. T. (1952). Hyalinization of the islet of Langerhans in diabetes mellitus. Diabetes 1 341–344. 10.2337/diab.1.5.341
    1. Berliner L. J., Khramtsov V., Fujii H., Clanton T. L. (2001). Unique in vivo applications of spin traps. Free Radic Biol. Med. 30 489–499. 10.1016/S0891-5849(00)00491-3
    1. Bilan D. S., Pase L., Joosen L., Gorokhovatsky A. Y., Ermakova Y. G., Gadella T. W., et al. (2013). HyPer-3: a genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem. Biol. 8 535–542. 10.1021/cb300625g
    1. Boersma G. J., Johansson E., Pereira M. J., Heurling K., Skrtic S., Lau J., et al. (2018). Altered glucose uptake in muscle, visceral adipose tissue, and brain predict whole-body insulin resistance and may contribute to the development of type 2 diabetes: a combined PET/MR study. Horm. Metab. Res. 50 627–639. 10.1055/a-0643-4739
    1. Bonner-Weir S. (2000). Life and death of the pancreatic beta cells. Trends Endocrinol. Metab. 11 375–378. 10.1016/S1043-2760(00)00305-2
    1. Boonstra J., Post J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337 1–13. 10.1016/j.gene.2004.04.032
    1. Brophy S., Yderstraede K., Mauricio D., Hunter S., Hawa M., Pozzilli P., et al. (2008). Time to insulin initiation cannot be used in defining latent autoimmune diabetes in adults. Diabetes Care 31 439–441. 10.2337/dc07-1308
    1. Butler A. E., Cao-Minh L., Galasso R., Rizza R. A., Corradin A., Cobelli C., et al. (2010). Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia 53 2167–2176. 10.1007/s00125-010-1809-6
    1. Butler A. E., Janson J., Bonner-Weir S., Ritzel R., Rizza R. A., Butler P. C. (2003). Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52 102–110. 10.2337/diabetes.52.1.102
    1. Buzzetti R., Di Pietro S., Giaccari A., Petrone A., Locatelli M., Suraci C., et al. (2007). High titer of autoantibodies to GAD identifies a specific phenotype of adult-onset autoimmune diabetes. Diabetes Care 30 932–938. 10.2337/dc06-1696
    1. Cai Z., Yan L. J. (2013). Protein oxidative modifications: beneficial roles in disease and health. J. Biochem. Pharmacol. Res. 1 15–26.
    1. Carlbom L., Espes D., Lubberink M., Martinell M., Johansson L., Ahlstrom H., et al. (2017). [11C]5-hydroxy-tryptophan PET for assessment of islet mass during progression of type 2 diabetes. Diabetes 66 1286–1292. 10.2337/db16-1449
    1. Cervin C., Lyssenko V., Bakhtadze E., Lindholm E., Nilsson P., Tuomi T., et al. (2008). Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes. Diabetes 57 1433–1437. 10.2337/db07-0299
    1. Chang S. G., Choi K. D., Jang S. H., Shin H. C. (2003). Role of disulfide bonds in the structure and activity of human insulin. Mol. Cells 16 323–330.
    1. Cheng G., Lanza-Jacoby S. (2015). Metformin decreases growth of pancreatic cancer cells by decreasing reactive oxygen species: role of NOX4. Biochem. Biophys. Res. Commun. 465 41–46. 10.1016/j.bbrc.2015.07.118
    1. Chu W., Chepetan A., Zhou D., Shoghi K. I., Xu J., Dugan L. L., et al. (2014). Development of a PET radiotracer for non-invasive imaging of the reactive oxygen species, superoxide, in vivo. Org. Biomol. Chem. 12 4421–4431. 10.1039/c3ob42379d
    1. Clark A., Wells C. A., Buley I. D., Cruickshank J. K., Vanhegan R. I., Matthews D. R., et al. (1988). Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res. 9 151–159.
    1. Cleland S. J., Fisher B. M., Colhoun H. M., Sattar N., Petrie J. R. (2013). Insulin resistance in type 1 diabetes: what is ’double diabetes’ and what are the risks? Diabetologia 56 1462–1470. 10.1007/s00125-013-2904-2
    1. DeGrado T. R., Coenen H. H., Stocklin G. (1991). 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA): evaluation in mouse of a new probe of myocardial utilization of long chain fatty acids. J. Nucl. Med. 32 1888–1896.
    1. Deng S., Vatamaniuk M., Huang X., Doliba N., Lian M. M., Frank A., et al. (2004). Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 53 624–632. 10.2337/diabetes.53.3.624
    1. Deniaud A., Sharaf el dein O., Maillier E., Poncet D., Kroemer G., Lemaire C., et al. (2008). Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27 285–299. 10.1038/sj.onc.1210638
    1. Diaz-Morales N., Rovira-Llopis S., Banuls C., Lopez-Domenech S., Escribano-Lopez I., Veses S., et al. (2017). Does metformin protect diabetic patients from oxidative stress and leukocyte-endothelium interactions? Antioxid. Redox Signal. 27 1439–1445. 10.1089/ars.2017.7122
    1. Donath M. Y., Ehses J. A., Maedler K., Schumann D. M., Ellingsgaard H., Eppler E., et al. (2005). Mechanisms of beta-cell death in type 2 diabetes. Diabetes 54(Suppl. 2), S108–S113. 10.2337/diabetes.54.suppl_2.S108
    1. Ehrlich J. C., Ratner I. M. (1961). Amyloidosis of the islets of Langerhans. A restudy of islet hyalin in diabetic and non-diabetic individuals. Am. J. Pathol. 38 49–59.
    1. Elas M., Ichikawa K., Halpern H. J. (2012). Oxidative stress imaging in live animals with techniques based on electron paramagnetic resonance. Radiat. Res. 177 514–523. 10.1667/RR2668.1
    1. Eriksson O., Espes D., Selvaraju R. K., Jansson E., Antoni G., Sorensen J., et al. (2014). Positron emission tomography ligand [11C]5-hydroxy-tryptophan can be used as a surrogate marker for the human endocrine pancreas. Diabetes 63 3428–3437. 10.2337/db13-1877
    1. Eriksson O., Johnstrom P., Cselenyi Z., Jahan M., Selvaraju R. K., Jensen-Waern M., et al. (2018). In vivo visualization of beta-cells by targeting of GPR44. Diabetes 67 182–192. 10.2337/db17-0764
    1. Eriksson O., Laughlin M., Brom M., Nuutila P., Roden M., Hwa A., et al. (2016). In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia 59 1340–1349. 10.1007/s00125-016-3959-7
    1. Esteghamati A., Eskandari D., Mirmiranpour H., Noshad S., Mousavizadeh M., Hedayati M., et al. (2013). Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: a randomized clinical trial. Clin. Nutr. 32 179–185. 10.1016/j.clnu.2012.08.006
    1. Falk-Delgado A., Kuntze Soderqvist A., Fransen J., Falk-Delgado A. (2015). Improved clinical outcome 3 months after endovascular treatment, including thrombectomy, in patients with acute ischemic stroke: a meta-analysis. J. Neurointerv. Surg. 8 665–670. 10.1136/neurintsurg-2015-011835
    1. Fourlanos S., Dotta F., Greenbaum C. J., Palmer J. P., Rolandsson O., Colman P. G., et al. (2005). Latent autoimmune diabetes in adults (LADA) should be less latent. Diabetologia 48 2206–2212. 10.1007/s00125-005-1960-7
    1. Goodge K. A., Hutton J. C. (2000). Translational regulation of proinsulin biosynthesis and proinsulin conversion in the pancreatic beta-cell. Semin. Cell Dev. Biol. 11 235–242. 10.1006/scdb.2000.0172
    1. Graciano M. F., Valle M. M., Curi R., Carpinelli A. R. (2013). Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion. Islets 5 139–148. 10.4161/isl.25459
    1. Gross E., Sevier C. S., Heldman N., Vitu E., Bentzur M., Kaiser C. A., et al. (2006). Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc. Natl. Acad. Sci. U.S.A. 103 299–304. 10.1073/pnas.0506448103
    1. Grunnet L. G., Aikin R., Tonnesen M. F., Paraskevas S., Blaabjerg L., Storling J., et al. (2009). Proinflammatory cytokines activate the intrinsic apoptotic pathway in beta-cells. Diabetes 58 1807–1815. 10.2337/db08-0178
    1. Guichard C., Moreau R., Pessayre D., Epperson T. K., Krause K. H. (2008). NOX family NADPH oxidases in liver and in pancreatic islets: a role in the metabolic syndrome and diabetes? Biochem. Soc. Trans. 36(Pt 5), 920–929. 10.1042/BST0360920
    1. Gutscher M., Sobotta M. C., Wabnitz G. H., Ballikaya S., Meyer A. J., Samstag Y., et al. (2009). Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J. Biol. Chem. 284 31532–31540. 10.1074/jbc.M109.059246
    1. Halliwell B., Whiteman M. (2004). Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br. J. Pharmacol. 142 231–255.
    1. Hanley S. C., Austin E., Assouline-Thomas B., Kapeluto J., Blaichman J., Moosavi M., et al. (2010). {beta}-Cell mass dynamics and islet cell plasticity in human type 2 diabetes. Endocrinology 151 1462–1472. 10.1210/en.2009-1277
    1. Henquin J. C., Rahier J. (2011). Pancreatic alpha cell mass in European subjects with type 2 diabetes. Diabetologia 54 1720–1725. 10.1007/s00125-011-2118-4
    1. Hirvonen J., Virtanen K. A., Nummenmaa L., Hannukainen J. C., Honka M. J., Bucci M., et al. (2011). Effects of insulin on brain glucose metabolism in impaired glucose tolerance. Diabetes 60 443–447. 10.2337/db10-0940
    1. Huang C. J., Lin C. Y., Haataja L., Gurlo T., Butler A. E., Rizza R. A., et al. (2007). High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56 2016–2027. 10.2337/db07-0197
    1. Hulman A., Witte D. R., Vistisen D., Balkau B., Dekker J. M., Herder C., et al. (2018). Pathophysiological characteristics underlying different glucose response curves: a latent class trajectory analysis from the prospective EGIR-RISC study. Diabetes Care 41 1740–1748. 10.2337/dc18-0279
    1. Jung K. H., Lee J. H., Thien Quach C. H., Paik J. Y., Oh H., Park J. W., et al. (2013). Resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species-mediated hypoxia-inducible factor-1alpha activation. J. Nucl. Med. 54 2161–2167. 10.2967/jnumed.112.115436
    1. Kajiwara C., Kusaka Y., Kimura S., Yamaguchi T., Nanjo Y., Ishii Y., et al. (2018). Metformin mediates protection against legionella pneumonia through activation of AMPK and mitochondrial reactive oxygen species. J. Immunol. 200 623–631. 10.4049/jimmunol.1700474
    1. Kaviarasan S., Muniandy S., Qvist R., Ismail I. S. (2009). F2-isoprostanes as novel biomarkers for type 2 diabetes: a review. J. Clin. Biochem. Nutr. 45 1–8. 10.3164/jcbn.08-266
    1. Kloppel G., Lohr M., Habich K., Oberholzer M., Heitz P. U. (1985). Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv. Synth. Pathol. Res. 4 110–125.
    1. Kroemer G., Marino G., Levine B. (2010). Autophagy and the integrated stress response. Mol. Cell 40 280–293. 10.1016/j.molcel.2010.09.023
    1. Laugesen E., Østergaard J. A., Leslie R. D., Danish Diabetes Academy Workshop and Workshop Speakers. (2015). Latent autoimmune diabetes of the adult: current knowledge and uncertainty. Diabetic Med. 32 843–852. 10.1111/dme.12700
    1. Lee J., Ma K., Moulik M., Yechoor V. (2018). Untimely oxidative stress in beta-cells leads to diabetes – Role of circadian clock in beta-cell function. Free Radic Biol. Med. 119 69–74. 10.1016/j.freeradbiomed.2018.02.022
    1. Lenzen S., Drinkgern J., Tiedge M. (1996). Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol. Med. 20 463–466. 10.1016/0891-5849(96)02051-5
    1. Li L., Cheng W.-Y., Glicksberg B. S., Gottesman O., Tamler R., Chen R., et al. (2015). Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci. Transl. Med. 7 ra174–ra311. 10.1126/scitranslmed.aaa9364
    1. Lipson K. L., Fonseca S. G., Ishigaki S., Nguyen L. X., Foss E., Bortell R., et al. (2006). Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab. 4 245–254. 10.1016/j.cmet.2006.07.007
    1. Maclean N., Ogilvie R. F. (1955). Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes 4 367–376. 10.2337/diab.4.5.367
    1. Marchetti P., Del Guerra S., Marselli L., Lupi R., Masini M., Pollera M., et al. (2004). Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J. Clin. Endocrinol. Metab. 89 5535–5541. 10.1210/jc.2004-0150
    1. Marré M. L., James E. A., Piganelli J. D. (2015). β cell ER stress and the implications for immunogenicity in type 1 diabetes. Front. Cell Dev. Biol. 3:67 10.3389/fcell.2015.00067
    1. Mather K. J., DeGrado T. R. (2016). Imaging of myocardial fatty acid oxidation. Biochim. Biophys. Acta 1861 1535–1543. 10.1016/j.bbalip.2016.02.019
    1. Mather K. J., Hutchins G. D., Perry K., Territo W., Chisholm R., Acton A., et al. (2016). Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer. Am. J. Physiol. Endocrinol. Metab. 310 E452–E460. 10.1152/ajpendo.00437.2015
    1. Meyer A. J., Dick T. P. (2010). Fluorescent protein-based redox probes. Antioxid. Redox Signal. 13 621–650. 10.1089/ars.2009.2948
    1. Miki A., Ricordi C., Sakuma Y., Yamamoto T., Misawa R., Mita A., et al. (2018). Divergent antioxidant capacity of human islet cell subsets: a potential cause of beta-cell vulnerability in diabetes and islet transplantation. PLoS One 13:e0196570. 10.1371/journal.pone.0196570
    1. Monnier L., Colette C., Mas E., Michel F., Cristol J. P., Boegner C., et al. (2010). Regulation of oxidative stress by glycaemic control: evidence for an independent inhibitory effect of insulin therapy. Diabetologia 53 562–571. 10.1007/s00125-009-1574-6
    1. Monnier L., Colette C., Michel F., Cristol J. P., Owens D. R. (2011). Insulin therapy has a complex relationship with measure of oxidative stress in type 2 diabetes: a case for further study. Diabetes Metab. Res. Rev. 27 348–353. 10.1002/dmrr.1174
    1. Morgan D., Rebelato E., Abdulkader F., Graciano M. F., Oliveira-Emilio H. R., Hirata A. E., et al. (2009). Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells. Endocrinology 1502197–2201. 10.1210/en.2008-1149
    1. Mosconi L., Pupi A., De Leon M. J. (2008). Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1147 180–195. 10.1196/annals.1427.007
    1. Nesti L., Natali A. (2017). Metformin effects on the heart and the cardiovascular system: a review of experimental and clinical data. Nutr. Metab. Cardiovasc. Dis. 27 657–669. 10.1016/j.numecd.2017.04.009
    1. Nielsen J. H. (2016). Beta cell adaptation in pregnancy: a tribute to Claes Hellerstrom. Ups. J. Med. Sci. 121 151–154. 10.3109/03009734.2016.1165776
    1. Niskanen L. K., Tuomi T., Karjalainen J., Groop L. C., Uusitupa M. I. (1995). GAD antibodies in NIDDM. Ten-year follow-up from the diagnosis. Diabetes Care 18 1557–1565. 10.2337/diacare.18.12.1557
    1. Nowotny K., Jung T., Hohn A., Weber D., Grune T. (2015). Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5 194–222. 10.3390/biom5010194
    1. Petersen K. E., Rakipovski G., Raun K., Lykkesfeldt J. (2016). Does glucagon-like peptide-1 ameliorate oxidative stress in diabetes? evidence based on experimental and clinical studies. Curr. Diabetes Rev. 12 331–358. 10.2174/1573399812666150918150608
    1. Phelps M. E., Huang S. C., Hoffman E. J., Selin C., Sokoloff L., Kuhl D. E. (1979). Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann. Neurol. 6 371–388. 10.1002/ana.410060502
    1. Prentki M., Joly E., El-Assaad W., Roduit R. (2002). Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes 51(Suppl. 3), S405–S413. 10.2337/diabetes.51.2007.S405
    1. Rahier J., Goebbels R. M., Henquin J. C. (1983). Cellular composition of the human diabetic pancreas. Diabetologia 24 366–371. 10.1007/BF00251826
    1. Rahier J., Guiot Y., Goebbels R. M., Sempoux C., Henquin J. C. (2008). Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes. Metab. 10(Suppl. 4), 32–42. 10.1111/j.1463-1326.2008.00969.x
    1. Rains J. L., Jain S. K. (2011). Oxidative stress, insulin signaling, and diabetes. Free Radic Biol. Med. 50 567–575. 10.1016/j.freeradbiomed.2010.12.006
    1. Rena G., Hardie D. G., Pearson E. R. (2017). The mechanisms of action of metformin. Diabetologia 60 1577–1585. 10.1007/s00125-017-4342-z
    1. Rijzewijk L. J., van der Meer R. W., Lamb H. J., de Jong H. W., Lubberink M., Romijn J. A., et al. (2009). Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. J. Am. Coll. Cardiol. 54 1524–1532. 10.1016/j.jacc.2009.04.074
    1. Rizzo M. R., Barbieri M., Marfella R., Paolisso G. (2012). Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition. Diabetes Care 35 2076–2082. 10.2337/dc12-0199
    1. Robertson R., Zhou H., Zhang T., Harmon J. S. (2007). Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes. Cell Biochem. Biophys. 48 139–146. 10.1007/s12013-007-0026-5
    1. Safai N., Carstensen B., Vestergaard H., Ridderstrale M. (2018). Impact of a multifactorial treatment programme on clinical outcomes and cardiovascular risk estimates: a retrospective cohort study from a specialised diabetes centre in Denmark. BMJ Open 8:e019214. 10.1136/bmjopen-2017-019214
    1. Saisho Y., Butler A. E., Manesso E., Elashoff D., Rizza R. A., Butler P. C. (2013). beta-cell mass and turnover in humans: effects of obesity and aging. Diabetes care 36 111–117. 10.2337/dc12-0421
    1. Sakuraba H., Mizukami H., Yagihashi N., Wada R., Hanyu C., Yagihashi S. (2002). Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 45 85–96. 10.1007/s125-002-8248-z
    1. Sawada F., Inoguchi T., Tsubouchi H., Sasaki S., Fujii M., Maeda Y., et al. (2008). Differential effect of sulfonylureas on production of reactive oxygen species and apoptosis in cultured pancreatic beta-cell line, MIN6. Metabolism 57 1038–1045. 10.1016/j.metabol.2008.01.038
    1. Scheuner D., Kaufman R. J. (2008). The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr. Rev. 29 317–333. 10.1210/er.2007-0039
    1. Schieber M., Chandel N. S. (2014). ROS function in redox signaling and oxidative stress. Curr. Biol. 24 R453–R462. 10.1016/j.cub.2014.03.034
    1. Sevier C. S., Kaiser C. A. (2002). Formation and transfer of disulphide bonds in living cells. Nat. Rev. Mol. Cell Biol. 3 836–847. 10.1038/nrm954
    1. Shanmugasundaram K., Nayak B. K., Friedrichs W. E., Kaushik D., Rodriguez R., Block K. (2017). NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance. Nat. Commun. 8:997. 10.1038/s41467-017-01106-1
    1. Shimizu Y., Hendershot L. M. (2009). Oxidative folding: cellular strategies for dealing with the resultant equimolar production of reactive oxygen species. Antioxid. Redox Signal. 11 2317–2331. 10.1089/ARS.2009.2501
    1. Siegelaar S. E., Barwari T., Kulik W., Hoekstra J. B., DeVries J. H. (2011). No relevant relationship between glucose variability and oxidative stress in well-regulated type 2 diabetes patients. J. Diabetes Sci. Technol. 5 86–92. 10.1177/193229681100500112
    1. Singh R. K., Gupta B., Tripathi K., Singh S. K. (2016). Anti oxidant potential of metformin and pioglitazone in type 2 diabetes mellitus: beyond their anti glycemic effect. Diabetes Metab. Syndr. 10 102–104. 10.1016/j.dsx.2015.08.016
    1. Spijker H. S., Song H., Ellenbroek J. H., Roefs M. M., Engelse M. A., Bos E., et al. (2015). Loss of beta-Cell identity occurs in type 2 diabetes and is associated with islet amyloid deposits. Diabetes 64 2928–2938. 10.2337/db14-1752
    1. Stadtman E. R. (1992). Protein oxidation and aging. Science 257 1220–1224. 10.1126/science.1355616
    1. Stadtman E. R. (2001). Protein oxidation in aging and age-related diseases. Ann. N. Y. Acad. Sci. 928 22–38. 10.1111/j.1749-6632.2001.tb05632.x
    1. Styskal J., Van Remmen H., Richardson A., Salmon A. B. (2012). Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic Biol. Med. 52 46–58. 10.1016/j.freeradbiomed.2011.10.441
    1. Syed I., Kyathanahalli C. N., Jayaram B., Govind S., Rhodes C. J., Kowluru R. A., et al. (2011). Increased phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic ZDF rat and human islets: role of Rac1-JNK1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet. Diabetes 60 2843–2852. 10.2337/db11-0809
    1. Takeda H., Kawasaki E., Shimizu I., Konoue E., Fujiyama M., Murao S., et al. (2002). Clinical, autoimmune, and genetic characteristics of adult-onset diabetic patients with GAD autoantibodies in Japan (Ehime Study). Diabetes Care 25:995. 10.2337/diacare.25.6.995
    1. Talchai C., Xuan S., Lin H. V., Sussel L., Accili D. (2012). Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150 1223–1234. 10.1016/j.cell.2012.07.029
    1. Tu B. P., Weissman J. S. (2004). Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164 341–346. 10.1083/jcb.200311055
    1. Tuomi T., Groop L. C., Zimmet P. Z., Rowley M. J., Knowles W., Mackay I. R. (1993). Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of disease. Diabetes 42 359–362. 10.2337/diab.42.2.359
    1. Turner R., Stratton I., Horton V., Manley S., Zimmet P., Mackay I. R., et al. (1997). UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK Prospective Diabetes Study Group. Lancet 350 1288–1293. 10.1016/S0140-6736(97)03062-6
    1. Tuzcu H., Aslan I., Aslan M. (2013). The effect of high-dose insulin analog initiation therapy on lipid peroxidation products and oxidative stress markers in type 2 diabetic patients. Oxid. Med. Cell Longev. 2013 513742. 10.1155/2013/513742
    1. Udler M. S., Kim J., von Grotthuss M., Bonàs-Guarch S., Cole J. B., Chiou J., et al. (2018). Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med. 15:e1002654. 10.1371/journal.pmed.1002654
    1. Uribarri J., Cai W., Peppa M., Goodman S., Ferrucci L., Striker G., et al. (2007). Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J. Gerontol. A Biol. Sci. Med. Sci. 62 427–433. 10.1093/gerona/62.4.427
    1. Van Assche F. A., Aerts L., De Prins F. (1978). A morphological study of the endocrine pancreas in human pregnancy. Br. J. Obstet. Gynaecol. 85 818–820. 10.1111/j.1471-0528.1978.tb15835.x
    1. Vancura A., Bu P., Bhagwat M., Zeng J., Vancurova I. (2018). Metformin as an anticancer agent. Trends Pharmacol. Sci. 39 867–878. 10.1016/j.tips.2018.07.006
    1. Vlassara H., Uribarri J. (2014). Advanced glycation end products (AGE) and diabetes: cause. Effect, or both? Curr. Diab. Rep. 14:453. 10.1007/s11892-013-0453-1
    1. Wang X., Elksnis A., Wikstrom P., Walum E., Welsh N., Carlsson P. O. (2018a). The novel NADPH oxidase 4 selective inhibitor GLX7013114 counteracts human islet cell death in vitro. PLoS One 13:e0204271. 10.1371/journal.pone.0204271
    1. Wang X., Li R., Zhao X., Yu X., Sun Q. (2018b). Metformin promotes HaCaT cell apoptosis through generation of reactive oxygen species via Raf-1-ERK1/2-Nrf2 inactivation. Inflammation 41 948–958. 10.1007/s10753-018-0749-z
    1. Watada H., Fujitani Y. (2015). Minireview: autophagy in pancreatic beta-cells and its implication in diabetes. Mol. Endocrinol. 29 338–348. 10.1210/me.2014-1367
    1. Weiss E. S., Hoffman E. J., Phelps M. E., Welch M. J., Henry P. D., Ter-Pogossian M. M., et al. (1976). External detection and visualization of myocardial ischemia with 11C-substrates in vitro and in vivo. Circ. Res. 39 24–32. 10.1161/01.RES.39.1.24
    1. Westermark P., Andersson A., Westermark G. T. (2011). Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 91 795–826. 10.1152/physrev.00042.2009
    1. White J. R. (2014). A brief history of the development of diabetes medications. Diabetes Spectrum. 27 82–86. 10.2337/diaspect.27.2.82
    1. Wilson A. A., Sadovski O., Nobrega J. N., Raymond R. J., Bambico F. R., Nashed M. G., et al. (2017). Evaluation of a novel radiotracer for positron emission tomography imaging of reactive oxygen species in the central nervous system. Nucl. Med. Biol. 53 14–20. 10.1016/j.nucmedbio.2017.05.011
    1. Witte D. P., Greider M. H., DeSchryver-Kecskemeti K., Kissane J. M., White N. H. (1984). The juvenile human endocrine pancreas: normal v idiopathic hyperinsulinemic hypoglycemia. Semin. Diagn. Pathol. 1 30–42.
    1. Wu J., Luo X., Thangthaeng N., Sumien N., Chen Z., Rutledge M. A., et al. (2017). Pancreatic mitochondrial complex I exhibits aberrant hyperactivity in diabetes. Biochem. Biophys. Rep. 11 119–129. 10.1016/j.bbrep.2017.07.007
    1. National Diabetes Data Group (1979). Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28 1039–1057. 10.2337/diab.28.12.1039
    1. Zeng C., Mulas F., Sui Y., Guan T., Miller N., Tan Y., et al. (2017). Pseudotemporal ordering of single cells reveals metabolic control of postnatal beta cell proliferation. Cell Metab. 25 1160.e11–1175.e11. 10.1016/j.cmet.2017.04.014
    1. Zhou Z., Xiang Y., Ji L., Jia W., Ning G., Huang G., et al. (2013). Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China Study). Diabetes 62:543. 10.2337/db12-0207
    1. Zimmet P., Alberti K. G., Magliano D. J., Bennett P. H. (2016). Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat. Rev. Endocrinol. 12 616–622. 10.1038/nrendo.2016.105

Source: PubMed

3
Sottoscrivi