Dysregulation of the Tryptophan Pathway Evidences Gender Differences in COPD

Shama Naz, Maria Bhat, Sara Ståhl, Helena Forsslund, C Magnus Sköld, Åsa M Wheelock, Craig E Wheelock, Shama Naz, Maria Bhat, Sara Ståhl, Helena Forsslund, C Magnus Sköld, Åsa M Wheelock, Craig E Wheelock

Abstract

Increased activity of indoleamine 2,3-dioxygenase (IDO) and tryptophan hydroxylase (TPH) have been reported in individuals with chronic obstructive pulmonary disease (COPD). We therefore investigated the effect of gender stratification upon the observed levels of tryptophan metabolites in COPD. Tryptophan, serotonin, kynurenine, and kynurenic acid were quantified in serum of never-smokers (n = 39), smokers (n = 40), COPD smokers (n = 27), and COPD ex-smokers (n = 11) by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The individual metabolite associations with lung function, blood, and bronchoalveolar lavage (BAL) immune-cell composition, as well as chemokine and cytokine levels, were investigated. Stratification by gender and smoking status revealed that the observed alterations in kynurenine and kynurenic acid, and to a lesser extent serotonin, were prominent in males, irrespective of COPD status (kynurenine p = 0.005, kynurenic acid p = 0.009, and serotonin p = 0.02). Inferred serum IDO activity and kynurenine levels decreased in smokers relative to never-smokers (p = 0.005 and p = 0.004, respectively). In contrast, inferred tryptophan hydroxylase (TPH) activity and serotonin levels showed an increase with smoking that reached significance with COPD (p = 0.01 and p = 0.01, respectively). Serum IDO activity correlated with blood CXC chemokine ligand 9 (CXCL9, p = 0.0009, r = 0.93) and chemokine (C-C motif) ligand 4 (CCL4.(p = 0.04, r = 0.73) in female COPD smokers. Conversely, serum serotonin levels correlated with BAL CD4+ T-cells (%) (p = 0.001, r = 0.92) and CD8+ T-cells (%) (p = 0.002, r = -0.90) in female COPD smokers, but not in male COPD smokers (p = 0.1, r = 0.46 and p = 0.1, r = -0.50, respectively). IDO- and TPH-mediated tryptophan metabolites showed gender-based associations in COPD, which were primarily driven by smoking status.

Keywords: COPD; IDO; gender; kynurenine; serotonin; smoking; tryptophan.

Conflict of interest statement

The authors declare no conflict of interest. Maria Bhat and Sara Ståhl were employed by AstraZeneca and may hold company shares. The involvement of AstraZeneca in this study included development of analysis method and analysis of samples.

Figures

Figure 1
Figure 1
Tryptophan pathway. Metabolites marked in bold were quantified by LC-MS/MS in the current study. IDO = indoleamine 2,3-dioxygenase, MAO = monoamine oxidase, TDO = tryptophan 2,3-dioxygenase, KAT = kynurenine aminotransferase, TPH = tryptophan hydroxylase.
Figure 2
Figure 2
Serum concentration of tryptophan pathway metabolites in smokers vs. COPD smokers, stratified by gender. (A) tryptophan, (B) kynurenine, (C) kynurenic acid, and (D) serotonin. Groups: Male smokers (n = 20), Male COPD (n = 14), Female smokers (n = 20), Female COPD (n = 12). Smokers: closed circles, COPD smokers: open circles, Male: blue, Female: orange. Significance was tested by applying a non-parametric Mann–Whitney test.
Figure 3
Figure 3
Serum concentration of tryptophan pathway metabolites in combined non-smokers vs. smokers irrespective of COPD status, stratified by gender. (A) tryptophan, (B) kynurenine, (C) kynurenic acid, and (D) serotonin. Groups: Male non-smokers (n = 24), Male smokers (n = 34), Female non-smokers (n = 25), Female smokers (n = 32). Smokers: closed circles, COPD smokers: open circles, male: blue, female: orange. Significance was tested by applying a non-parametric Mann–Whitney test. The corresponding p-values for the non-smoker vs. smoker combined gender comparisons were p = 0.6, p = 0.004, p = 0.008, and p = 0.009, respectively.
Figure 4
Figure 4
The level of serotonin in the current smoker COPD group stratified by chronic bronchitis (CB), emphysema (E) and absence of CB and E. Male: blue, Female: orange. Significance was tested using a non-parametric Mann–Whitney test.
Figure 5
Figure 5
(A) IDO activity was estimated by the ratio of kynurenine/tryptophan concentrations and (B) TPH activity was estimated by the ratio of serotonin/tryptophan concentrations. Never-smokers: closed circles, smokers: open circles, COPD smokers: closed triangles, COPD ex-smokers: open triangles. Male: blue, Female: orange. Significance was tested by applying a non-parametric Kruskal–Wallis one-way ANOVA and a non-parametric Mann–Whitney test.
Figure 6
Figure 6
Correlation of serum serotonin levels with T-cell populations from BAL cells in COPD smokers. (A) CD4/CD8 %, (B) CD4 %, (C) CD8 % (D) CD4+ FOXP3+ %, (E) CD8+ CD103+ CD69− CD27+ % and (F) CD8+ CD103+ CD69− CD27− %. Male: blue triangles, Female: orange triangles.

References

    1. Agusti A., Barnes P.J. Update in chronic obstructive pulmonary disease 2011. Am. J. Respir. Crit. Care Med. 2012;185:1171–1176. doi: 10.1164/rccm.201203-0505UP.
    1. Hogg J.C., Paré P.D., Hackett T.-L. The Contribution of Small Airway Obstruction to the Pathogenesis of Chronic Obstructive Pulmonary Disease. Physiol. Rev. 2017;97:529–552. doi: 10.1152/physrev.00025.2015.
    1. Rabe K.F., Watz H. Chronic Obstructive Pulmonary Disease. Lancet. 2017;389:1931–1940. doi: 10.1016/S0140-6736(17)31222-9.
    1. Forsslund H., Mikko M., Karimi R., Grunewald J., Wheelock Å.M., Wahlström J., Sköld C.M. Distribution of T-cell subsets in BAL fluid of patients with mild to moderate COPD depends on current smoking status and not airway obstruction. Chest. 2014;145:711–722. doi: 10.1378/chest.13-0873.
    1. Vargas-Rojas M.I., Ramírez-Venegas A., Limón-Camacho L., Ochoa L., Hernández-Zenteno R., Sansores R.H. Increase of Th17 cells in peripheral blood of patients with chronic obstructive pulmonary disease. Respir. Med. 2011;105:1648–1654. doi: 10.1016/j.rmed.2011.05.017.
    1. Barnes P.J. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2016;138:16–27. doi: 10.1016/j.jaci.2016.05.011.
    1. Sun N., Wei X., Wang J., Cheng Z., Sun W. Caveolin-1 Promotes the Imbalance of Th17/Treg in Patients with Chronic Obstructive Pulmonary Disease. Inflammation. 2016;39:2008–2015. doi: 10.1007/s10753-016-0436-x.
    1. Shaykhiev R., Sackrowitz R., Fukui T., Zuo W.L., Chao I.W., Strulovici-Barel Y., Downey R.J., Crystal R.G. Smoking-induced CXCL14 expression in the human airway epithelium links chronic obstructive pulmonary disease to lung cancer. Am. J. Respir. Cell Mol. Biol. 2013;49:41–425. doi: 10.1165/rcmb.2012-0396OC.
    1. Le Floc’h N., Otten W., Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids. 2011;41:1195–1205. doi: 10.1007/s00726-010-0752-7.
    1. Agus A., Planchais J., Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe. 2018;23:716–724. doi: 10.1016/j.chom.2018.05.003.
    1. Lau W.K.W., Chan-Yeung M.M.W., Yip B.H.K., Cheung A.H.K., Ip M.S.M., Mak J.C.W. The role of circulating serotonin in the development of chronic obstructive pulmonary disease. PLoS ONE. 2012;7:e31617. doi: 10.1371/journal.pone.0031617.
    1. Yeung A.W.S., Terentis A.C., King N.J.C., Thomas S.R. Role of indoleamine 2,3-dioxygenase in health and disease. Clin. Sci. 2015;129:601–672. doi: 10.1042/CS20140392.
    1. Meier M.A., Ottiger M., Vögeli A., Steuer C., Bernasconi L., Thomann R., Christ-Crain M., Henzen C., Hoess C., Zimmerli W., et al. Activation of the Serotonin Pathway is Associated with Poor Outcome in COPD Exacerbation: Results of a Long-Term Cohort Study. Lung. 2017;195:303–311. doi: 10.1007/s00408-017-0004-7.
    1. Cervenka I., Agudelo L.Z., Ruas J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357 doi: 10.1126/science.aaf9794.
    1. Gál E.M., Sherman A.D. l-Kynurenine Its synthesis and possible regulatory function in brain. Neurochem. Res. 1980;5:223–239. doi: 10.1007/BF00964611.
    1. Platten M., Nollen E.A.A., Röhrig U.F., Fallarino F., Opitz C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 2019;18:379–401. doi: 10.1038/s41573-019-0016-5.
    1. Herraiz T., Chaparro C. Human monoamine oxidase is inhibited by tobacco smoke: β-carboline alkaloids act as potent and reversible inhibitors. Biochem. Biophys. Res. Commun. 2005;326:378–386. doi: 10.1016/j.bbrc.2004.11.033.
    1. Hayaishi O. Utilization of Superoxide Anion by Indoleamine Oxygenase-Catalyzed Tryptophan and Indoleamine Oxidation. Adv. Exp. Med. Biol. 1996;398:285–289.
    1. Sage L.K., Fox J.M., Mellor A.L., Tompkins S.M., Tripp R.A. Indoleamine 2,3-Dioxygenase (IDO) Activity During the Primary Immune Response to Influenza Infection Modifies the Memory T Cell Response to Influenza Challenge. Viral Immunol. 2014;27:112–123. doi: 10.1089/vim.2013.0105.
    1. Maneechotesuwan K., Wongkajornsilp A., Adcock I.M., Barnes P.J. Simvastatin suppresses airway IL-17 and upregulates IL-10 in patients with stable COPD. Chest. 2015;148:1164–1176. doi: 10.1378/chest.14-3138.
    1. Morecroft I. Functional Interactions between 5-Hydroxytryptamine Receptors and the Serotonin Transporter in Pulmonary Arteries. J. Pharmacol. Exp. Ther. 2005;313:539–548. doi: 10.1124/jpet.104.081182.
    1. Khalil A.A., Davies B., Castagnoli N. Isolation and characterization of a monoamine oxidase B selective inhibitor from tobacco smoke. Bioorg. Med. Chem. 2006;14:3392–3398. doi: 10.1016/j.bmc.2005.12.057.
    1. Naz S., Kolmert J., Yang M., Reinke S.N., Kamleh M.A., Snowden S., Heyder T., Levänen B., Erle D.J., Sköld C.M., et al. Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD. Eur. Respir. J. 2017;49 doi: 10.1183/13993003.02322-2016.
    1. Forsslund H., Yang M., Mikko M., Karimi R., Nyrén S., Engvall B., Grunewald J., Merikallio H., Kaarteenaho R., Wahlström J., et al. Gender differences in the t-cell profiles of the airways in COPD patients associated with clinical phenotypes. Int. J. COPD. 2017;12:35–48. doi: 10.2147/COPD.S113625.
    1. Balgoma D., Yang M., Sjödin M., Snowden S., Karimi R., Levänen B., Merikallio H., Kaarteenaho R., Palmberg L., Larsson K., et al. Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD. Eur. Respir. J. 2016;47:1645–1656. doi: 10.1183/13993003.01080-2015.
    1. Ubhi B.K., Riley J.H., Shaw P.A., Lomas D.A., Tal-Singers R., MacNeef W., Griffin J.L., Connor S.C. Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur. Respir. J. 2012;40:345–355. doi: 10.1183/09031936.00112411.
    1. Maneechotesuwan K., Kasetsinsombat K., Wongkajornsilp A., Barnes P.J. Decreased indoleamine 2,3-dioxygenase activity and IL-10/IL-17A ratio in patients with COPD. Thorax. 2013;68:330–337. doi: 10.1136/thoraxjnl-2012-202127.
    1. Lewis G.D., Ngo D., Hemnes A.R., Farrell L., Domos C., Pappagianopoulos P.P., Dhakal B.P., Souza A., Shi X., Pugh M.E., et al. Metabolic Profiling of Right Ventricular-Pulmonary Vascular Function Reveals Circulating Biomarkers of Pulmonary Hypertension. J. Am. Coll. Cardiol. 2016;67:174–189. doi: 10.1016/j.jacc.2015.10.072.
    1. Hervé C., Beyne P., Jamault H., Delacoux E. Determination of tryptophan and its kynurenine pathway metabolites in human serum by high-performance liquid chromatography with simultaneous ultraviolet and fluorimetric detection. J. Chromatogr. B Biomed. Appl. 1996;675:157–161. doi: 10.1016/0378-4347(95)00341-X.
    1. Meier M.A., Ottiger M., Vögeli A., Steuer C., Bernasconi L., Thomann R., Christ-Crain M., Henzen C., Hoess C., Zimmerli W., et al. Activation of the tryptophan/serotonin pathway is associated with severity and predicts outcomes in pneumonia: Results of a long-term cohort study. Clin. Chem. Lab. Med. 2017;55:1060–1069. doi: 10.1515/cclm-2016-0912.
    1. Suzuki Y., Suda T., Yokomura K., Suzuki M., Fujie M., Furuhashi K., Hahimoto D., Enomto N., Fujisawa T., Nakamura Y., et al. Serum activity of indoleamine 2,3-dioxygenase predicts prognosis of community-acquired pneumonia. J. Infect. 2011;63:215–222. doi: 10.1016/j.jinf.2011.07.003.
    1. Wendt C., Gulcev M., Reilly C., Griffin T., Broeckling C., Sandri B., Witthuhn B., Hodgson S., Woodruff P. Tryptophan catabolism in acute exacerbations of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulm. Dis. 2016;11:2435–2446. doi: 10.2147/COPD.S107844.
    1. Pertovaara M., Heliövaara M., Raitala A., Oja S.S., Knekt P., Hurme M. The activity of the immunoregulatory enzyme indoleamine 2,3-dioxygenase is decreased in smokers. Clin. Exp. Immunol. 2006;145:469–473. doi: 10.1111/j.1365-2249.2006.03166.x.
    1. Hogg J.C. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 2004;364:709–721. doi: 10.1016/S0140-6736(04)16900-6.
    1. Saetta M., Mariani M., Panina-Bordignon P., Turato G., Buonsanti C., Baraldo S., Bellettato C.M., Papi A., Corbetta L., Zuin R., et al. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2002;165:1404–1409. doi: 10.1164/rccm.2107139.
    1. Costa C., Rufino R., Traves S.L., Lapa E., Silva J.R., Barnes P.J., Donnelly L.E. CXCR3 and CCR5 chemokines in induced sputum from patients with COPD. Chest. 2008;133:26–33. doi: 10.1378/chest.07-0393.
    1. Taylor M.W., Feng G.S. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991;5:2516–2522. doi: 10.1096/fasebj.5.11.1907934.
    1. Han M.L.K., Postma D., Mannino D.M., Giardino N.D., Buist S., Curtis J.L., Martinez F.J. Gender and chronic obstructive pulmonary disease: Why it matters. Am. J. Respir. Crit. Care Med. 2007;176:1179–1184. doi: 10.1164/rccm.200704-553CC.
    1. Baggiolini M., Dewald B., Moser B. lnterleukin-8 and Related Chemotactic Cytokines—CXC and CC Chemokines. Adv. Immunol. 1993;55:97–179.
    1. Rollins B.J., Walz A., Baggiolini M. Recombinant human MCP-1/JE induces chemotaxis, calcium flux, and the respiratory burst in human monocytes. Blood. 1991;78:1112–1116.
    1. Tam A., Churg A., Wright J.L., Zhou S., Kirby M., Coxson H.O., Lam S., Man S.F.P., Sin D.D. Sex differences in airway remodeling in a mouse model of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2016;193:825–834. doi: 10.1164/rccm.201503-0487OC.
    1. Olson T.P., Snyder E.M., Frantz R.P., Turner S.T., Johnson B.D. Repeat length polymorphism of the serotonin transporter gene influences pulmonary artery pressure in heart failure. Am. Heart J. 2007;153:426–432. doi: 10.1016/j.ahj.2006.12.011.
    1. Eddahibi S., Chaouat A., Morrell N., Fadel E., Fuhrman C., Bugnet A.S., Dartevelle P., Housset B., Hamon M., Weitzenblum E., et al. Polymorphism of the Serotonin Transporter Gene and Pulmonary Hypertension in Chronic Obstructive Pulmonary Disease. Circulation. 2003;108:1839–1844. doi: 10.1161/01.CIR.0000091409.53101.E8.
    1. Sun W., Jiang X., Yuan L., Li P., Wang J., Wang P., Zhang L., Sun B. Effect of Simvastatin on 5-HT and 5-HTT in a Rat Model of Pulmonary Artery Hypertension. Cell. Physiol. Biochem. 2015;37:1712–1724.
    1. Wang Q., Chen D., Nicholson P., Cheng S., Alen M., Mao L., Cheng S. The Associations of Serum Serotonin with Bone Traits Are Age- and Gender-Specific. PLoS ONE. 2014;9:e109028. doi: 10.1371/journal.pone.0109028.
    1. Saetta M., Baraldo S., Corbino L., Turato G., Braccioni F., Rea F., Cavallesco G., Tropeano G., Mapp C.E., Maestrelli P., et al. CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999;160:711–717. doi: 10.1164/ajrccm.160.2.9812020.
    1. Xia H.J., Zhang G.H., Wang R.R., Zheng Y.T. The influence of age and sex on the cell counts of peripheral blood leukocyte subpopulations in Chinese rhesus macaques. Cell. Mol. Immunol. 2009;6:433–440. doi: 10.1038/cmi.2009.55.
    1. Di Marco F., Verga M., Reggente M., Maria Casanova F., Santus P., Blasi F., Allegra L., Centanni S. Anxiety and depression in COPD patients: The roles of gender and disease severity. Respir. Med. 2006;100:1767–1774. doi: 10.1016/j.rmed.2006.01.026.
    1. Wirthgen E., Hoeflich A., Rebl A., Günther J. Kynurenic Acid: The Janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions. Front. Immunol. 2018;8:1957. doi: 10.3389/fimmu.2017.01957.
    1. Van der Leek A.P., Yanishevsky Y., Kozyrskyj A.L. The kynurenine pathway as a novel link between allergy and the gut microbiome. Front. Immunol. 2017;8:1374. doi: 10.3389/fimmu.2017.01374.
    1. Tam A., Bates J.H.T., Churg A., Wright J.L., Man S.F.P., Sin D.D. Sex-related differences in pulmonary function following 6 months of cigarette exposure: Implications for sexual dimorphism in mild COPD. PLoS ONE. 2016;11:e0164835. doi: 10.1371/journal.pone.0164835.
    1. Han M.L.K., Arteaga-Solis E., Blenis J., Bourjeily G., Clegg D.J., DeMeo D., Duffy J., Gaston B., Heller N.M., Hemnes A., et al. Female sex and gender in lung/sleep health and disease: Increased understanding of basic biological, pathophysiological, and behavioral mechanisms leading to better health for female patients with lung disease. Am. J. Respir. Crit. Care Med. 2018;198:850–858. doi: 10.1164/rccm.201801-0168WS.
    1. Roager H.M., Licht T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018;9:3294. doi: 10.1038/s41467-018-05470-4.
    1. Widner B., Werner E.R., Schennach H., Wachter H., Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin. Chem. 1997;43:2424–2426.

Source: PubMed

3
Sottoscrivi