Use of population-based surveillance to define the high incidence of shigellosis in an urban slum in Nairobi, Kenya

Henry N Njuguna, Leonard Cosmas, John Williamson, Dhillon Nyachieo, Beatrice Olack, John B Ochieng, Newton Wamola, Joseph O Oundo, Daniel R Feikin, Eric D Mintz, Robert F Breiman, Henry N Njuguna, Leonard Cosmas, John Williamson, Dhillon Nyachieo, Beatrice Olack, John B Ochieng, Newton Wamola, Joseph O Oundo, Daniel R Feikin, Eric D Mintz, Robert F Breiman

Abstract

Background: Worldwide, Shigella causes an estimated 160 million infections and >1 million deaths annually. However, limited incidence data are available from African urban slums. We investigated the epidemiology of shigellosis and drug susceptibility patterns within a densely populated urban settlement in Nairobi, Kenya through population-based surveillance.

Methods: Surveillance participants were interviewed in their homes every 2 weeks by community interviewers. Participants also had free access to a designated study clinic in the surveillance area where stool specimens were collected from patients with diarrhea (≥3 loose stools within 24 hours) or dysentery (≥1 stool with visible blood during previous 24 hours). We adjusted crude incidence rates for participants meeting stool collection criteria at household visits who reported visiting another clinic.

Results: Shigella species were isolated from 262 (24%) of 1,096 stool specimens [corrected]. The overall adjusted incidence rate was 408/100,000 person years of observation (PYO) with highest rates among adults 34-49 years old (1,575/100,000 PYO). Isolates were: Shigella flexneri (64%), S. dysenteriae (11%), S. sonnei (9%), and S. boydii (5%). Over 90% of all Shigella isolates were resistant to trimethoprim-sulfamethoxazole and sulfisoxazole. Additional resistance included nalidixic acid (3%), ciprofloxacin (1%) and ceftriaxone (1%).

Conclusion: More than 1 of every 200 persons experience shigellosis each year in this Kenyan urban slum, yielding rates similar to those in some Asian countries. Provision of safe drinking water, improved sanitation, and hygiene in urban slums are needed to reduce disease burden, in addition to development of effective Shigella vaccines.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Formula for adjusted incidence rate…
Figure 1. Formula for adjusted incidence rate calculations.
Figure 2. Flow chart illustrating distribution of…
Figure 2. Flow chart illustrating distribution of diarrhea cases and shigella species isolated between 1 Jan 2007 and 31 Dec 2010 in Kibera, Kenya.
Figure 3. Proportions of patients meeting the…
Figure 3. Proportions of patients meeting the case definitions providing stool sample by age category.

References

    1. Iwalokun BA, Gbenle GO, Smith SI, Ogunledun A, Akinsinde KA, et al. (2001) Epidemiology of shigellosis in Lagos, Nigeria: trends in antimicrobial resistance. J Health Popul Nutr 19: 183–190.
    1. Ram PK, Crump JA, Gupta SK, Miller MA, Mintz ED (2008) Part II. Analysis of data gaps pertaining to Shigella infections in low and medium human development index countries, 1984–2005. Epidemiol Infect 136: 577–603.
    1. Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, et al. (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77: 651–666.
    1. CDC (1986) Multiply resistant shigellosis in a day-care centre–Texas. MMWR. pp.35;753–755.
    1. DuPont HL, Levine MM, Hornick RB, Formal SB (1989) Inoculum size in shigellosis and implications for expected mode of transmission. J Infect Dis 159: 1126–1128.
    1. Levine OS, Levine MM (1991) Houseflies (Musca domestica) as mechanical vectors of shigellosis. Rev Infect Dis 13: 688–696.
    1. Niyogi SK (2005) Shigellosis. J Microbiol 43: 133–143.
    1. Guerrant RL, Van Gilder T, Steiner TS, Thielman NM, Slutsker L, et al. (2001) Practice guidelines for the management of infectious diarrhea. Clin Infect Dis 32: 331–351.
    1. Basualdo W, Arbo A (2003) Randomized comparison of azithromycin versus cefixime for treatment of shigellosis in children. Pediatr Infect Dis J 22: 374–377.
    1. Bennish ML, Salam MA, Hossain MA, Myaux J, Khan EH, et al. (1992) Antimicrobial resistance of Shigella isolates in Bangladesh, 1983–1990: increasing frequency of strains multiply resistant to ampicillin, trimethoprim-sulfamethoxazole, and nalidixic acid. Clin Infect Dis 14: 1055–1060.
    1. Fontaine O (1989) Antibiotics in the management of shigellosis in children: what role for the quinolones? Rev Infect Dis 11 Suppl 5S1145–1150.
    1. Sack DA, McLaughlin LC, Suwanvanichkij B (2001) Animicrobial Resistance in Shigelosis, Cholera and Campylobacteriosis. In: Organization WH, editor. Geneva.
    1. Ries AA, Wells JG, Olivola D, Ntakibirora M, Nyandwi S, et al. (1994) Epidemic Shigella dysenteriae type 1 in Burundi: panresistance and implications for prevention. J Infect Dis 169: 1035–1041.
    1. Kosek M, Bern C, Guerrant RL (2003) The global burden of diarrheal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organization: 986–997.
    1. Baqui AH, Black RE, Yunus M, Hoque AR, Chowdhury HR, et al. (1991) Methodological issues in diarrhoeal diseases epidemiology: definition of diarrhoeal episodes. Int J Epidemiol 20: 1057–1063.
    1. Alam N, Henry FJ, Rahaman MM (1989) Reporting errors in one-week diarrhoea recall surveys: experience from a prospective study in rural Bangladesh. Int J Epidemiol 18: 697–700.
    1. Feikin DR, Olack B, Bigogo GM, Audi A, Cosmas L, et al. (2011) The burden of common infectious disease syndromes at the clinic and household level from population-based surveillance in rural and urban Kenya. PLoS ONE 6: e16085.
    1. Breiman RF, Cosmas L, Njuguna H, Audi A, Olack B, et al. (2012) Population-based incidence of typhoid Fever in an urban informal settlement and a rural area in kenya: implications for typhoid vaccine use in Africa. PLoS ONE 7: e29119.
    1. Feikin DR, Audi A, Olack B, Bigogo GM, Polyak C, et al. (2010) Evaluation of the optimal recall period for disease symptoms in home-based morbidity surveillance in rural and urban Kenya. Int J Epidemiol 39: 450–458.
    1. Krieg NR, Holt JG, Bergey (1984) Bergey's manual of systematic bacteriology/Noel R. Krieg, editor, volume 1; John G. Holt, editor-in-chief. Baltimore: Williams & Wilkins. 4 v. (xxvii, 2648 p.).
    1. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45: 493–496.
    1. CLSI (2006) Clinical and Laboratory Standards Institute Quality Manual. Wayne, Pennsylvania: CLSI.
    1. Feikin DR, Jagero G, Aura B, Bigogo GM, Oundo J, et al. (2010) High rate of pneumococcal bacteremia in a prospective cohort of older children and adults in an area of high HIV prevalence in rural western Kenya. BMC Infect Dis 10: 186.
    1. Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH, et al. (2012) The Global Enteric Multicenter Study (GEMS) of diarrheal disease in infants and young children in developing countries: epidemiologic and clinical methods of the case/control study. Clin Infect Dis 55 Suppl 4S232–245.
    1. UN-HABITAT (2010) State of the Urban Youth 2010/11 Leveling the Playing Field: Inequality of Youth Opportunity. Earthscan.
    1. NOAA Kenya weather. National oceanic and atmospheric administration. Nairobi.
    1. von Seidlein L, Kim DR, Ali M, Lee H, Wang X, et al. (2006) A multicentre study of Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiology. PLoS Med 3: e353.
    1. Murphy MS (2008) Management of bloody diarrhoea in children in primary care. BMJ 336: 1010–1015.
    1. MMWR (2011) Vital signs: incidence and trends of infection with pathogens transmitted commonly through food–foodborne diseases active surveillance network, 10 U.S. sites, 1996–2010. MMWR Morb Mortal Wkly Rep 60: 749–755.
    1. Brooks JT, Ochieng JB, Kumar L, Okoth G, Shapiro RL, et al. (2006) Surveillance for bacterial diarrhea and antimicrobial resistance in rural western Kenya, 1997–2003. Clin Infect Dis 43: 393–401.
    1. Shapiro RL, Kumar L, Phillips-Howard P, Wells JG, Adcock P, et al. (2001) Antimicrobial-resistant bacterial diarrhea in rural western Kenya. J Infect Dis 183: 1701–1704.
    1. Herwana E, Surjawidjaja JE, Salim O, Indriani N, Bukitwetan P, et al. (2010) Shigella-associated diarrhea in children in South Jakarta, Indonesia. Southeast Asian J Trop Med Public Health 41: 418–425.
    1. Ghaemi EO, Aslani MM, Moradi AV, Dadgar T, Livani S, et al. (2007) Epidemiology of Shigella-associated diarrhea in Gorgan, north of Iran. Saudi J Gastroenterol 13: 129–132.
    1. Ahmed F, Clemens JD, Rao MR, Ansaruzzaman M, Haque E (1997) Epidemiology of shigellosis among children exposed to cases of Shigella dysentery: a multivariate assessment. Am J Trop Med Hyg 56: 258–264.
    1. Patel RB, Burke TF (2009) Urbanization–an emerging humanitarian disaster. N Engl J Med 361: 741–743.
    1. Sire JM, Macondo EA, Perrier-Gros-Claude JD, Siby T, Bahsoun I, et al. (2008) Antimicrobial resistance in Shigella species isolated in Dakar, Senegal (2004–2006). Jpn J Infect Dis 61: 307–309.
    1. Udo SM, Eja ME (2004) Prevalence and antibiotic resistant Shigellae among primary school children in urban Calabar, Nigeria. Asia Pac J Public Health 16: 41–44.
    1. Mandomando I, Jaintilal D, Pons MJ, Valles X, Espasa M, et al. (2009) Antimicrobial susceptibility and mechanisms of resistance in Shigella and Salmonella isolates from children under five years of age with diarrhea in rural Mozambique. Antimicrob Agents Chemother 53: 2450–2454.
    1. Beatty ME, Ochieng JB, Chege W, Kumar L, Okoth G, et al. (2009) Sporadic paediatric diarrhoeal illness in urban and rural sites in Nyanza Province, Kenya. East Afr Med J 86: 387–398.
    1. Tabu C, Breiman RF, Ochieng B, Aura B, Cosmas L, et al. (2012) Differing burden and epidemiology of non-typhi salmonella bacteremia in rural and urban kenya, 2006–2009. PLoS ONE 7: e31237.
    1. Crump JA, Barrett TJ, Nelson JT, Angulo FJ (2003) Reevaluating fluoroquinolone breakpoints for Salmonella enterica serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis 37: 75–81.
    1. Mundy LS, Shanholtzer CJ, Willard KE, Peterson LR (1991) An evaluation of three commercial fecal transport systems for the recovery of enteric pathogens. Am J Clin Pathol 96: 364–367.
    1. Zwane AP, Kremer M (2007) What works in fighting diarrheal diseases in developing countries? A critical review. The World Bank Research Observer.

Source: PubMed

3
Sottoscrivi