Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use

Laurent Muller, Xavier Bobbia, Mehdi Toumi, Guillaume Louart, Nicolas Molinari, Benoit Ragonnet, Hervé Quintard, Marc Leone, Lana Zoric, Jean Yves Lefrant, AzuRea group, Laurent Muller, Xavier Bobbia, Mehdi Toumi, Guillaume Louart, Nicolas Molinari, Benoit Ragonnet, Hervé Quintard, Marc Leone, Lana Zoric, Jean Yves Lefrant, AzuRea group

Abstract

Introduction: To investigate whether respiratory variation of inferior vena cava diameter (cIVC) predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure (ACF).

Methods: Forty patients with ACF and spontaneous breathing were included. Response to fluid challenge was defined as a 15% increase of subaortic velocity time index (VTI) measured by transthoracic echocardiography. Inferior vena cava diameters were recorded by a subcostal view using M Mode. The cIVC was calculated as follows: (Dmax - Dmin/Dmax) × 100 and then receiver operating characteristic (ROC) curves were generated for cIVC, baseline VTI, E wave velocity, E/A and E/Ea ratios.

Results: Among 40 included patients, 20 (50%) were responders (R). The causes of ACF were sepsis (n = 24), haemorrhage (n = 11), and dehydration (n = 5). The area under the ROC curve for cIVC was 0.77 (95% CI: 0.60-0.88). The best cutoff value was 40% (Se = 70%, Sp = 80%). The AUC of the ROC curves for baseline E wave velocity, VTI, E/A ratio, E/Ea ratio were 0.83 (95% CI: 0.68-0.93), 0.78 (95% CI: 0.61-0.88), 0.76 (95% CI: 0.59-0.89), 0.58 (95% CI: 0.41-0.75), respectively. The differences between AUC the ROC curves for cIVC and baseline E wave velocity, baseline VTI, baseline E/A ratio, and baseline E/Ea ratio were not statistically different (p = 0.46, p = 0.99, p = 1.00, p = 0.26, respectively).

Conclusion: In spontaneously breathing patients with ACF, high cIVC values (>40%) are usually associated with fluid responsiveness while low values (< 40%) do not exclude fluid responsiveness.

Figures

Figure 1
Figure 1
Individual values of inferior vena cava collapsibility (cIVC) (%) after infusion of 500 mL of HES. The best cutoff value is 40%.
Figure 2
Figure 2
Receiver operator characteristic (ROC) curve for inferior vena cava collapsibility (cIVC) (%) after infusion of 500 mL of HES. Area under the ROC curve was 0.77 (95% CI 0.60, 0.88).

References

    1. Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, Scolletta S, Vieillard-Baron A, De Backer D, Walley KR, Maggiorini M, Singer M. Clinical review: Update on hemodynamic monitoring-a consensus of 16. Crit Care. 2011;16:229. doi: 10.1186/cc10291.
    1. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;16:2000–2008. doi: 10.1378/chest.121.6.2000.
    1. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;16:134–138.
    1. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;16:867–873. doi: 10.1378/chest.119.3.867.
    1. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL. Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med. 2005;16:1195–1201. doi: 10.1007/s00134-005-2731-0.
    1. Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;16:419–428. doi: 10.1097/00000542-200508000-00026.
    1. Soubrier S, Saulnier F, Hubert H, Delour P, Lenci H, Onimus T, Nseir S, Durocher A. Can dynamic indicators help the prediction of fluid responsiveness in spontaneously breathing critically ill patients? Intensive Care Med. 2007;16:1117–1124. doi: 10.1007/s00134-007-0644-9.
    1. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;16:2642–2647. doi: 10.1097/CCM.0b013e3181a590da.
    1. Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, Teboul JL. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;16:64–68. doi: 10.1097/01.CCM.0000249851.94101.4F.
    1. Teboul JL. SRLF experts recommendations: Indicators of volume resuscitation during circulatory failure. Ann Fr Anesth Reanim. 2005;16:568–576. doi: 10.1016/j.annfar.2005.04.003. Article in French.
    1. Muller L, Louart G, Bengler C, Fabbro-Peray P, Carr J, Ripart J, de La Coussaye JE, Lefrant JY. The intrathoracic blood volume index as an indicator of fluid responsiveness in critically ill patients with acute circulatory failure: a comparison with central venous pressure. Anesth Analg. 2008;16:607–613. doi: 10.1213/ane.0b013e31817e6618.
    1. Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med. 2006;16:1333–1337. doi: 10.1097/01.CCM.0000214677.76535.A5.
    1. Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G. Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest. 2002;16:1245–1252. doi: 10.1378/chest.121.4.1245.
    1. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;16:1402–1407. doi: 10.1097/01.CCM.0000215453.11735.06.
    1. Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul JL. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med. 2007;16:1125–1132. doi: 10.1007/s00134-007-0646-7.
    1. Muller L, Toumi M, Bousquet PJ, Riu-Poulenc B, Louart G, Candela D, Zoric L, Suehs C, de La Coussaye JE, Molinari N, Lefrant JY. AzuRéa Group. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011;16:541–547. doi: 10.1097/ALN.0b013e318229a500.
    1. Brennan JM, Ronan A, Goonewardena S, Blair JE, Hammes M, Shah D, Vasaiwala S, Kirkpatrick JN, Spencer KT. Handcarried ultrasound measurement of the inferior vena cava for assessment of intravascular volume status in the outpatient hemodialysis clinic. Clin J Am Soc Nephrol. 2006;16:749–753. doi: 10.2215/CJN.00310106.
    1. Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;16:1834–1837.
    1. Caille V, Jabot J, Belliard G, Charron C, Jardin F, Vieillard-Baron A. Hemodynamic effects of passive leg raising: an echocardiographic study in patients with shock. Intensive Care Med. 2008;16:1239–1245. doi: 10.1007/s00134-008-1067-y.
    1. Maizel J, Airapetian N, Lorne E, Tribouilloy C, Massy Z, Slama M. Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med. 2007;16:1133–1138. doi: 10.1007/s00134-007-0642-y.
    1. Nagdev AD, Merchant RC, Tirado-Gonzalez A, Sisson CA, Murphy MC. Emergency department bedside ultrasonographic measurement of the caval index for noninvasive determination of low central venous pressure. Ann Emerg Med. 2010;16:290–295. doi: 10.1016/j.annemergmed.2009.04.021.
    1. Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, Kirkpatrick JN, Spencer KT. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr. 2007;16:857–861. doi: 10.1016/j.echo.2007.01.005.
    1. Cheriex EC, Leunissen KM, Janssen JH, Mooy JM, van Hooff JP. Echography of the inferior vena cava is a simple and reliable tool for estimation of 'dry weight' in haemodialysis patients. Nephrol Dial Transplant. 1989;16:563–568.
    1. Guiotto G, Masarone M, Paladino F, Ruggiero E, Scott S, Verde S, Schiraldi F. Inferior vena cava collapsibility to guide fluid removal in slow continuous ultrafiltration: a pilot study. Intensive Care Med. 2010;16:692–696. doi: 10.1007/s00134-009-1745-4.
    1. Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F. Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med. 2002;16:1310–1319. doi: 10.1164/rccm.200202-146CC.
    1. Vanoverschelde JL, Robert AR, Gerbaux A, Michel X, Hanet C, Wijns W. Noninvasive estimation of pulmonary arterial wedge pressure with Doppler transmitral flow velocity pattern in patients with known heart disease. Am J Cardiol. 1995;16:383–389. doi: 10.1016/S0002-9149(99)80559-1.
    1. Boussuges A, Blanc P, Molenat F, Burnet H, Habib G, Sainty JM. Evaluation of left ventricular filling pressure by transthoracic Doppler echocardiography in the intensive care unit. Crit Care Med. 2002;16:362–367. doi: 10.1097/00003246-200202000-00016.
    1. Bouhemad B, Nicolas-Robin A, Benois A, Lemaire S, Goarin JP, Rouby JJ. Echocardiographic Doppler assessment of pulmonary capillary wedge pressure in surgical patients with postoperative circulatory shock and acute lung injury. Anesthesiology. 2003;16:1091–1100. doi: 10.1097/00000542-200305000-00011.
    1. Mayo PH, Beaulieu Y, Doelken P, Feller-Kopman D, Harrod C, Kaplan A, Oropello J, Vieillard-Baron A, Axler O, Lichtenstein D Maury E, Slama M, Vignon P. American College of Chest Physicians/La Societe de Reanimation de Langue Francaise statement on competence in critical care ultrasonography. Chest. 2009;16:1050–1060. doi: 10.1378/chest.08-2305.
    1. Barbier C, Loubieres Y, Schmit C, Hayon J, Ricome JL, Jardin F, Vieillard-Baron A. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;16:1740–1746.
    1. Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, Jardin F. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;16:1734–1739.
    1. Lewis JF, Kuo LC, Nelson JG, Limacher MC, Quinones MA. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation. 1984;16:425–431. doi: 10.1161/01.CIR.70.3.425.
    1. Dokainish H, Zoghbi WA, Lakkis NM, Al-Bakshy F, Dhir M, Quinones MA, Nagueh SF. Optimal noninvasive assessment of left ventricular filling pressures: a comparison of tissue Doppler echocardiography and B-type natriuretic peptide in patients with pulmonary artery catheters. Circulation. 2004;16:2432–2439. doi: 10.1161/01.CIR.0000127882.58426.7A.
    1. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009;16:165–193. doi: 10.1093/ejechocard/jen204.
    1. Vieillard-Baron A, Charron C, Chergui K, Peyrouset O, Jardin F. Bedside echocardiographic evaluation of hemodynamics in sepsis: is a qualitative evaluation sufficient? Intensive Care Med. 2006;16:1547–1552. doi: 10.1007/s00134-006-0274-7.
    1. Ferrari E, Baudouy M, Taillan B, Fredenrich A, Tomi M, Grinda JM, Teboul J, Jourdan J, Morand P. Cardiac insufficiency caused by arteriovenous fistula. An unusual complication of spinal surgery. Arch Mal Coeur Vaiss. 1990;16:1727–1728. [Article in French]
    1. Ray P, LeManach Y, Riou B, Houle T. Statistical evaluation of a biomarker. Anesthesiology. 2010;16:1023–1040. doi: 10.1097/ALN.0b013e3181d47604.
    1. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;16:839–843.
    1. Ray P, Le Manach Y, Riou B, Houle TT. Statistical Evaluation of a Biomarker. Anesthesiology. 2010. pp. 1023–1040.
    1. Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat Med. 2000;16:1141–1164. doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>;2-F.
    1. Lyon M, Blaivas M, Brannam L. Sonographic measurement of the inferior vena cava as a marker of blood loss. Am J Emerg Med. 2005;16:45–50. doi: 10.1016/j.ajem.2004.01.004.
    1. Baumann UA, Marquis C, Stoupis C, Willenberg TA, Takala J, Jakob SM. Estimation of central venous pressure by ultrasound. Resuscitation. 2005;16:193–199. doi: 10.1016/j.resuscitation.2004.08.015.
    1. Wallace DJ, Allison M, Stone MB. Inferior vena cava percentage collapse during respiration is affected by the sampling location: an ultrasound study in healthy volunteers. Acad Emerg Med. 2010;16:96–99. doi: 10.1111/j.1553-2712.2009.00627.x.
    1. Kimura BJ, Dalugdugan R, Gilcrease GW, Phan JN, Showalter BK, Wolfson T. The effect of breathing manner on inferior vena caval diameter. Eur J Echocardiogr. 2011;16:120–123. doi: 10.1093/ejechocard/jeq157.
    1. Dokainish H, Nguyen J, Sengupta R, Pillai M, Alam M, Bobek J, Lakkis N. New, simple echocardiographic indexes for the estimation of filling pressure in patients with cardiac disease and preserved left ventricular ejection fraction. Echocardiography. 2010;16:946–953. doi: 10.1111/j.1540-8175.2010.01177.x.

Source: PubMed

3
Sottoscrivi