Ultrasonic Surgical Aspirator to Treat Deep Infrabony Defects: A New Flapless Minimally Invasive Approach

Carlo Ghezzi, Camilla Donghi, Luca Ferrantino, Elena Varoni, Giovanni Lodi, Carlo Ghezzi, Camilla Donghi, Luca Ferrantino, Elena Varoni, Giovanni Lodi

Abstract

The primary outcome of the present study was to assess the percentage of pocket closure, and the secondary aim was to evaluate the clinical performance in terms of clinical attachment level (CAL) gain, probing pocket depth (PPD) reduction, and gingival recession (REC) after the use of cavitron ultrasonic surgical aspirator (CUSA) in deep infrabony defects. Fourteen deep infrabony defects in 11 patients who were previously treated with active periodontal therapy followed by one year of supportive periodontal therapy (at least three sessions) were additionally treated by the aid of CUSA. Eighty-six percent of the initial defects (12 out of 14) resulted in a PD < 5 mm, showing complete resolution six months after CUSA treatment, without any adverse event and with negligible pain (VAS from 0 to 3). CUSA showed potential as a method to promote pocket healing, reduce PPD, and increase clinical attachment (P < 0.001) in deep infrabony defects. This trial is registered with ClinicalTrials.gov NCT03567161.

Figures

Figure 1
Figure 1
In the case of one or two wall defects, it was possible to use the transgingival approach through the very small access cavity on the basis of the papilla. (a) The sonotrode tip contacting the mucosa surface; (b) the small access after the CUSA treatment.
Figure 2
Figure 2
Ultrasound generator: hand-piece recognition and automatic adaptation; three frequencies: 25, 35, and 55 kHz; automatic self-test of all of the important functions predefined power steps or direct adjustment; and optical and acoustical indicator.
Figure 3
Figure 3
The stack of piezoelectric quartzes transforms the electrical energy of the generator into a longitudinal, mechanical vibration of the sonotrode tip.
Figure 4
Figure 4
Example of handpieces and sonostrodes.
Figure 5
Figure 5
This sequence shows an infrasulcular approach to fragment the tissue. The sonotrode was inserted in a periodontal pocket (a). The tip of the device, placed in contact with the tissues, destroys and emulsifies cells that are irrigated and removed through a built-in suction tube (b). After CUSA treatment, a blood clot fills the target area (c, d).
Figure 6
Figure 6
Progression of X-rays showing bone remineralization. Baseline is 12 months after (a) T0. In this case, the PD decreased from 10 mm ((b) baseline) to 4 mm (6 months (c) after CUSA treatment). The CAL gain was 7 mm (from 15 mm to 8 mm).
Figure 7
Figure 7
Progression of X-rays showing bone remineralization. Baseline is 12 months after (a) T0. In this case, the PD decreased from 8 mm ((b) baseline) to 3 mm (6 months (c) after CUSA). The CAL gain was 4 mm (from 10 mm to 6 mm).
Figure 8
Figure 8
Progression of X-rays showing bone remineralization. Baseline is 12 months after (a) T0. In this case, the PD decreased from 9 mm ((b) baseline) to 4 mm (6 months (c) after CUSA). The CAL gain was 6 mm (from 15 mm to 9 mm).
Figure 9
Figure 9
Progression of X-rays showing bone remineralization. Baseline is 12 months after (a) T0. In this case, the PD decreased from 10 mm ((b) baseline) to 4 mm (6 months (c) after CUSA). The CAL gain was 6 mm (from 14 mm to 8 mm).
Figure 10
Figure 10
Distribution of the 11 patients by the VAS score after CUSA treatment.

References

    1. Papapanou P. N., Wennström J. L. The angular bony defect as indicator of further alveolar bone loss. Journal of Clinical Periodontology. 1991;18(5):317–322. doi: 10.1111/j.1600-051x.1991.tb00435.x.
    1. Matuliene G., Pjetursson B. E., Salvi G. E., et al. Influence of residual pockets on progression of periodontitis and tooth loss: results after 11 years of maintenance. Journal of Clinical Periodontology. 2008;35(8):685–695. doi: 10.1111/j.1600-051x.2008.01245.x.
    1. Sanz M., Tonetti M. S., Zabalegui I., et al. Treatment of intrabony defects with enamel matrix proteins or barrier membranes: results from a multicenter practice-based clinical trial. Journal of Periodontology. 2004;75(5):726–733. doi: 10.1902/jop.2004.75.5.726.
    1. Needleman I. G., Worthington H. V., Giedrys-Leeper E., Tucker R. J. Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database of Systematic Reviews. 2006;2 doi: 10.1002/14651858.cd001724.
    1. Cortellini P., Tonetti M. S. Focus on intrabony defects: guided tissue regeneration. Periodontology. 2000;22(1):104–132. doi: 10.1034/j.1600-0757.2000.2220108.x.
    1. Esposito M., Grusovin M. G., Papanikolaou N., Coulthard P., Worthington H. V. Enamel matrix derivative (Emdogain®) for periodontal tissue regeneration in intrabony defects. Cochrane Database of Systematic Reviews. 2009;4 doi: 10.1002/14651858.cd003875.pub3.
    1. Harrel S. K. A minimally invasive surgical approach for periodontal regeneration: surgical technique and observations. Journal of Periodontology. 1999;70(12):1547–1557. doi: 10.1902/jop.1999.70.12.1547.
    1. Harrel S. K., Wilson T. G., Nunn M. E. Prospective assessment of the use of enamel matrix proteins with minimally invasive surgery. Journal of Periodontology. 2005;76(3):380–384. doi: 10.1902/jop.2005.76.3.380.
    1. Harrel S. K., Wilson T. G., Nunn M. E. Prospective assessment of the use of enamel matrix derivative with minimally invasive surgery: 6-year results. Journal of Periodontology. 2010;81(3):435–441. doi: 10.1902/jop.2009.090393.
    1. Cortellini P., Tonetti M. S. A minimally invasive surgical technique with an enamel matrix derivative in the regenerative treatment of intra-bony defects: a novel approach to limit morbidity. Journal of Clinical Periodontology. 2007;34(1):87–93. doi: 10.1111/j.1600-051x.2006.01020.x.
    1. Cortellini P., Tonetti M. S. Clinical and radiographic outcomes of the modified minimally invasive surgical technique with and without regenerative materials: a randomized-controlled trial in intra-bony defects. Journal of Clinical Periodontology. 2011;38(4):365–373. doi: 10.1111/j.1600-051x.2011.01705.x.
    1. Cortellini P. Minimally invasive surgical techniques in periodontal regeneration. Journal of Evidence-based Dental Practice. 2012;12(3):89–100. doi: 10.1016/s1532-3382(12)70021-0.
    1. Trombelli L., Farina R., Franceschetti G., Calura G. Single-flap approach with buccal access in periodontal reconstructive procedures. Journal of Periodontology. 2009;80(2):353–360. doi: 10.1902/jop.2009.080420.
    1. Cortellini P., Pini Prato G., Tonetti M. S. Periodontal regeneration of human infrabony defects. I. Clinical measures. Journal of Periodontology. 1993;64(4):254–260. doi: 10.1902/jop.1993.64.4.254.
    1. Cortellini P., Pini Prato G., Tonetti M. S. Periodontal regeneration of human intrabony defects with titanium reinforced membranes. A controlled clinical trial. Journal of Periodontology. 1995;66(9):797–803. doi: 10.1902/jop.1995.66.9.797.
    1. Cortellini P., Prato G. P., Tonetti M. S. The modified papilla preservation technique. A new surgical approach for interproximal regenerative procedures. Journal of Periodontology. 1995;66(4):261–266. doi: 10.1902/jop.1995.66.4.261.
    1. Wikesjö U. M., Nilvéus R. Periodontal repair in dogs: effect of wound stabilization on healing. Journal of Periodontology. 1990;61(12):719–724. doi: 10.1902/jop.1990.61.12.719.
    1. Ghezzi C., Ferrantino L., Bernardini L., Lencioni M., Masiero S. Minimally invasive surgical technique in periodontal regeneration: a randomized controlled clinical trial pilot study. International Journal of Periodontics and Restorative Dentistry. 2016;36(4):475–482. doi: 10.11607/prd.2550.
    1. Linghorne W. J., O’connell D. C. Studies in the regeneration and reattachment of supporting structures of the teeth; soft tissue reattachment. Journal of Dental Research. 1950;29(4):419–428. doi: 10.1177/00220345500290040301.
    1. Hiatt W. H., Stallard R. E., Butler E. D., Badget B. Repair following mucoperiosteal flap surgery with full gingival retention. Journal of Periodontology. 1968;39(1):11–16. doi: 10.1902/jop.1968.39.1.11.
    1. Haney J. M., Nilveus R. E., McMillan P. J., Wikesjo U. M. Periodontal repair in dogs: expanded polytetrafluorethylene barrier membrane support wound stabilisation and enhance bone regeneration. Journal of Periodontology. 1993;64(9):883–890. doi: 10.1902/jop.1993.64.9.883.
    1. Trombelli L., Simonelli A., Schincaglia G. P., Cucchi A., Farina R. Single-flap approach for surgical debridement of deep intraosseous defects: a randomized controlled trial. Journal of Periodontology. 2012;83(1):27–35. doi: 10.1902/jop.2011.110045.
    1. Ribeiro F. V., Casarin R. C. V., Júnior F. H. N., Sallum E. A., Casati M. Z. The role of enamel matrix derivative protein in minimally invasive surgery in treating intrabony defects in single-rooted teeth: a randomized clinical trial. Journal of Periodontology. 2011;82(4):522–532. doi: 10.1902/jop.2010.100454.
    1. Ower P. Minimally-invasive non-surgical periodontal therapy. Dental Update. 2013;40(4):289–290. doi: 10.12968/denu.2013.40.4.289.
    1. Ribeiro F. V., Casarin R. C., Palma M. A., Júnior F. H., Sallum E. A., Casati M. Z. Clinical and patient-centered outcomes after minimally invasive non-surgical or surgical approaches for the treatment of intrabony defects: a randomized clinical trial. Journal of Periodontology. 2011;82(9):1256–1266. doi: 10.1902/jop.2011.100680.
    1. Nibali L., Pometti D., Chen T. T., Tu Y. K. Minimally invasive non-surgical approach for the treatment of periodontal intrabony defects: a retrospective analysis. Journal of Clinical Periodontology. 2015;42(9):853–859. doi: 10.1111/jcpe.12443.
    1. Nibali L. Intrabony defects and non-surgical treatment. Primary Dental Journal. 2014;3(3):48–50. doi: 10.1308/205016814812736682.
    1. Aimetti M., Ferrarotti F., Mariani G. M., Romano F. A novel flapless approach versus minimally invasive surgery in periodontal regeneration with enamel matrix derivative proteins: a 24-month randomized controlled clinical trial. Clinical Oral Investigations. 2016;21(1):327–337. doi: 10.1007/s00784-016-1795-2.
    1. El Moghazy W. M., Hedaya M. S., Kaido T., Egawa H., Uemoto S., Takada Y. Two different methods for donor hepatic transection: cavitron ultrasonic surgical aspirator with bipolar cautery versus cavitron ultrasonic surgical aspirator with radiofrequency coagulator–a randomized controlled trial. Liver Transplantation. 2009;15(1):102–105. doi: 10.1002/lt.21658.
    1. Bonner K., Siegel K. R. Pathology, treatment and management of posterior fossa brain tumors in childhood. Journal of Neuroscience Nursing. 1988;20(2):84–93. doi: 10.1097/01376517-198804000-00004.
    1. Qian N. S., Liao Y. H., Cai S. W., Raut V., Dong J. H. Comprehensive application of modern technologies in precise liver resection. Hepatobiliary and Pancreatic Diseases International. 2013;12(3):244–250. doi: 10.1016/s1499-3872(13)60040-5.
    1. O’Daly B. J., Morris E., Gavin G. P., O’Byrne J. M., McGuinness G. B. High-power low-frequency ultrasound: a review of tissue dissection and ablation in medicine and surgery. Journal of Materials Processing Technology. 2008;200(1–3):38–58. doi: 10.1016/j.jmatprotec.2007.11.041.
    1. Heitz-Mayfield L. J., Trombelli L., Heitz F., Needleman I., Moles D. A systematic review of the effect of surgical debridement vs non-surgical debridement for the treatment of chronic periodontitis. Journal of Clinical Periodontology. 2002;29(3):92–102. doi: 10.1034/j.1600-051x.29.s3.5.x.
    1. Heitz-Mayfield L. J. How effective is surgical therapy compared with nonsurgical debridement? Periodontology. 2000;37(1):72–87. doi: 10.1111/j.1600-0757.2004.03797.x.
    1. Claffey N., Loos B., Gantes B., Martin M., Egelberg J. Probing depth at re-evaluation following initial periodontal therapy to indicate the initial response to treatment. Journal of Clinical Periodontology. 1989;16(4):229–233. doi: 10.1111/j.1600-051x.1989.tb01646.x.

Source: PubMed

3
Sottoscrivi