Cell-Free DNA Variant Sequencing Using CTC-Depleted Blood for Comprehensive Liquid Biopsy Testing in Metastatic Breast Cancer

Corinna Keup, Markus Storbeck, Siegfried Hauch, Peter Hahn, Markus Sprenger-Haussels, Mitra Tewes, Pawel Mach, Oliver Hoffmann, Rainer Kimmig, Sabine Kasimir-Bauer, Corinna Keup, Markus Storbeck, Siegfried Hauch, Peter Hahn, Markus Sprenger-Haussels, Mitra Tewes, Pawel Mach, Oliver Hoffmann, Rainer Kimmig, Sabine Kasimir-Bauer

Abstract

Liquid biopsy analytes such as cell-free DNA (cfDNA) and circulating tumor cells (CTCs) exhibit great potential for personalized treatment. Since cfDNA and CTCs are considered to give additive information and blood specimens are limited, isolation of cfDNA and CTC in an "all from one tube" format is desired. We investigated whether cfDNA variant sequencing from CTC-depleted blood (CTC-depl. B; obtained after positive immunomagnetic isolation of CTCs (AdnaTest EMT-2/Stem Cell Select, QIAGEN)) impacts the results compared to cfDNA variant sequencing from matched whole blood (WB). Cell-free DNA was isolated using matched WB and CTC-depl. B from 17 hormone receptor positive/human epidermal growth factor receptor 2 negative (HR+/HER2-) metastatic breast cancer patients (QIAamp MinElute ccfDNA Kit, QIAGEN). Cell-free DNA libraries were constructed (customized QIAseq Targeted DNA Panel for Illumina, QIAGEN) with integrated unique molecular indices. Sequencing (on the NextSeq 550 platform, Illumina) and data analysis (Ingenuity Variant Analysis) were performed. RNA expression in CTCs was analyzed by multimarker quantitative PCR. Cell-free DNA concentration and size distribution in the matched plasma samples were not significantly different. Seventy percent of all variants were identical in matched WB and CTC-depl. B, but 115/125 variants were exclusively found in WB/CTC-depl. B. The number of detected variants per patient and the number of exclusively detected variants per patient in only one cfDNA source did not differ between the two matched cfDNA sources. Even the characteristics of the exclusively detected cfDNA variants in either WB or CTC-depl. B were comparable. Thus, cfDNA variants from matched WB and CTC-depl. B exhibited no relevant differences, and parallel isolation of cfDNA and CTCs from only 10 mL of blood in an "all from one tube" format was feasible. Matched cfDNA mutational and CTC transcriptional analyses might empower a comprehensive liquid biopsy analysis to enhance the identification of actionable targets for individual therapy strategies.

Keywords: cell-free DNA; circulating tumor cells; liquid biopsy; metastatic breast cancer; next-generation sequencing.

Conflict of interest statement

C.K., M.T., P.M., O.H., and R.K. declare that they have no competing interests. M.S., S.H., P.H., and M.S.H. are employees at QIAGEN, Hilden, Germany. S.K.B. is a consultant for QIAGEN, Hilden, Germany.

Figures

Figure 1
Figure 1
Inter-individual variability of cell-free DNA (cfDNA) concentration. Plasma from circulating tumor cell (CTC)-depleted (depl.)_blood (by AdnaTest EMT-2/StemCell Select) and matched plasma from whole blood were used in the same volume for cfDNA isolation with a QIAamp MinElute ccfDNA Kit, and cfDNA was quantified using an Agilent High Sensitivity Chip (fragments between 100–700 bp).
Figure 2
Figure 2
Size distribution of cfDNA. Matched cfDNA samples isolated from CTC-depl. blood (B,D; CTC isolation using AdnaTest EMT-2/StemCell Select) and from whole blood (A,C) of two exemplary patients (A + B; C + D) displayed a large mononucleosomal fraction and, in general, a similar size distribution without high-molecular-weight DNA (700–10,000 bp). Capillary electrophoresis was performed with an Agilent High Sensitivity Chip. (A) Cell-free DNA eluate from whole blood of patient 2, diluted 1:40; (B) cfDNA eluate from CTC-depl. blood of patient 2, diluted 1:40; (C) cfDNA eluate from whole blood of patient 3, diluted 1:5; (D) cfDNA eluate from CTC-depl. blood of patient 3, diluted 1:20.
Figure 3
Figure 3
Venn diagram (A) and cross table (B) of matched cfDNA variants isolated from whole blood (light gray) and CTC-depleted blood (dark gray). Variants in all exonic regions of 17 genes were examined in 12 metastatic breast cancer (MBC) patients with hormone receptor positive/human epidermal growth factor receptor 2 negative (HR+/HER2−) primary tumor. Depletion of CTCs was conducted using AdnaTest EMT-2/StemCell Select. Variant calling by verification of unique molecular indices and filter of the Ingenuity Variant Analysis were described previously [25]. The proportional Venn diagram was computed using the tool BioVenn [26] and displays a great overlap of identical variants found in both cfDNA sources.
Figure 4
Figure 4
Boxplots describing the number of (A) detected cfDNA variants, and (B) the number of exclusively detected cfDNA variants per patient in whole blood (gray) and CTC-depleted blood (black, using AdnaTest EMT-2/StemCell Select). Means and standard deviations are also displayed, and the Wilcoxon signed-rank test indicated no significant difference between both cfDNA sources.
Figure 5
Figure 5
Boxplots describing the number of exclusively detected cfDNA variants per patient with specific characteristics in whole blood (gray) and CTC-depleted blood (black, using AdnaTest EMT-2/StemCell Select). The averages and standard deviations are indicated. Depicted characteristics are the major parameters of the categories: translation impact (frameshift (A)), classification (pathogenic and likely pathogenic (B), uncertain significance (C)), gene (AR (D), BRCA2 (E), and MUC16 (F)), gene region (exonic (G)), and allele frequency (<1% (H), 1–5% (I)). The Wilcoxon signed-rank test indicated no significant difference between the 12 matched cfDNA sources regarding any depicted characteristic.
Figure 6
Figure 6
Distribution of called cfDNA variants isolated from whole blood (AD) and CTC-depleted blood (EH) of HR+/HER2− MBC patients (n = 12) according to their gene location (A,D,E,H), allele frequency (B,F), and classification (C,G). (A,E) Distribution of (exclusive (D,H)) variants according to their gene location. Most variants were found in the MUC16 gene, while pathogenic or likely pathogenic variants were mostly located in the AR or BRCA2 gene. (B,F) Allele frequency of all variants; 90% of all variants showed AFs <5%. (C,G) Classification of variants according to their known impact (benign, likely benign, uncertain significance, likely pathogenic and pathogenic) done by IVA. Nearly 25% of all variants are known to be likely pathogenic or pathogenic. No significant different distribution was detected for cfDNA variants from matched whole blood and CTC-depl. blood.

References

    1. Diaz L.A., Bardelli A. Liquid biopsies: Genotyping circulating tumor DNA. J. Clin. Oncol. 2014;32:579–586. doi: 10.1200/JCO.2012.45.2011.
    1. Krawczyk N., Fehm T., Banys-Paluchowski M., Janni W., Schramm A. Liquid Biopsy in Metastasized Breast Cancer as Basis for Treatment Decisions. Oncol. Res. Treat. 2016;39:112–116. doi: 10.1159/000444605.
    1. Takeshita T., Yamamoto Y., Yamamoto-Ibusuki M., Tomiguchi M., Sueta A., Murakami K., Omoto Y., Iwase H. Analysis of ESR1 and PIK3CA mutations in plasma cell-free DNA from ER-positive breast cancer patients. Oncotarget. 2017;8:52142–52155. doi: 10.18632/oncotarget.18479.
    1. Fribbens C., O’Leary B., Kilburn L., Hrebien S., Garcia-Murillas I., Beaney M., Cristofanilli M., Andre F., Loi S., Loibl S., et al. Plasma ESR1 Mutations and the Treatment of Estrogen Receptor-Positive Advanced Breast Cancer. J. Clin. Oncol. 2016;34:2961–2968. doi: 10.1200/JCO.2016.67.3061.
    1. Wan J.C.M., Massie C., Garcia-Corbacho J., Mouliere F., Brenton J.D., Caldas C., Pacey S., Baird R., Rosenfeld N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer. 2017;17:223–238. doi: 10.1038/nrc.2017.7.
    1. Diehl F., Schmidt K., Choti M.A., Romans K., Goodman S., Li M., Thornton K., Agrawal N., Sokoll L., Szabo S.A., et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008;14:985–990. doi: 10.1038/nm.1789.
    1. Dawson S.-J., Tsui D.W.Y., Murtaza M., Biggs H., Rueda O.M., Chin S.-F., Dunning M.J., Gale D., Forshew T., Mahler-Araujo B., et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 2013;368:1199–1209. doi: 10.1056/NEJMoa1213261.
    1. Cristofanilli M., Budd G.T., Ellis M.J., Stopeck A., Matera J., Miller M.C., Reuben J.M., Doyle G.V., Allard W.J., Terstappen L.W.M.M., et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 2004;351:781–791. doi: 10.1056/NEJMoa040766.
    1. Hayes D.F., Cristofanilli M., Budd G.T., Ellis M.J., Stopeck A., Miller M.C., Matera J., Allard W.J., Doyle G.V., Terstappen L.W.W.M. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 2006;12:4218–4224. doi: 10.1158/1078-0432.CCR-05-2821.
    1. Budd G.T., Cristofanilli M., Ellis M.J., Stopeck A., Borden E., Miller M.C., Matera J., Repollet M., Doyle G.V., Terstappen L.W.M.M., et al. Circulating tumor cells versus imaging—Predicting overall survival in metastatic breast cancer. Clin. Cancer Res. 2006;12:6403–6409. doi: 10.1158/1078-0432.CCR-05-1769.
    1. Alix-Panabières C., Pantel K. Circulating tumor cells: Liquid biopsy of cancer. Clin. Chem. 2013;59:110–118. doi: 10.1373/clinchem.2012.194258.
    1. Keup C., Mach P., Aktas B., Tewes M., Kolberg H.-C., Hauch S., Sprenger-Haussels M., Kimmig R., Kasimir-Bauer S. RNA Profiles of Circulating Tumor Cells and Extracellular Vesicles for Therapy Stratification of Metastatic Breast Cancer Patients. Clin. Chem. 2018 doi: 10.1373/clinchem.2017.283531.
    1. Manier S., Park J., Capelletti M., Bustoros M., Freeman S.S., Ha G., Rhoades J., Liu C.J., Huynh D., Reed S.C., et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat. Commun. 2018;9:1691. doi: 10.1038/s41467-018-04001-5.
    1. Haber D.A., Velculescu V.E. Blood-based analyses of cancer: Circulating tumor cells and circulating tumor DNA. Cancer Discov. 2014;4:650–661. doi: 10.1158/-13-1014.
    1. Heidary M., Auer M., Ulz P., Heitzer E., Petru E., Gasch C., Riethdorf S., Mauermann O., Lafer I., Pristauz G., et al. The dynamic range of circulating tumor DNA in metastatic breast cancer. Breast Cancer Res. 2014;16:421. doi: 10.1186/s13058-014-0421-y.
    1. Delfau-Larue M.-H., van der Gucht A., Dupuis J., Jais J.-P., Nel I., Beldi-Ferchiou A., Hamdane S., Benmaad I., Laboure G., Verret B., et al. Total metabolic tumor volume, circulating tumor cells, cell-free DNA: Distinct prognostic value in follicular lymphoma. Blood Adv. 2018;2:807–816. doi: 10.1182/bloodadvances.2017015164.
    1. Shaw J.A., Guttery D.S., Hills A., Fernandez-Garcia D., Page K., Rosales B.M., Goddard K.S., Hastings R.K., Luo J., Ogle O., et al. Mutation Analysis of Cell-Free DNA and Single Circulating Tumor Cells in Metastatic Breast Cancer Patients with High Circulating Tumor Cell Counts. Clin. Cancer Res. 2017;23:88–96. doi: 10.1158/1078-0432.CCR-16-0825.
    1. Rossi G., Mu Z., Rademaker A.W., Austin L.K., Strickland K.S., Costa R.L.B., Nagy R.J., Zagonel V., Taxter T.J., Behdad A., et al. Cell-Free DNA and Circulating Tumor Cells: Comprehensive Liquid Biopsy Analysis in Advanced Breast Cancer. Clin. Cancer Res. 2018;24:560–568. doi: 10.1158/1078-0432.CCR-17-2092.
    1. Mastoraki S., Strati A., Tzanikou E., Chimonidou M., Politaki E., Voutsina A., Psyrri A., Georgoulias V., Lianidou E. ESR1 Methylation: A Liquid Biopsy-Based Epigenetic Assay for the Follow-up of Patients with Metastatic Breast Cancer Receiving Endocrine Treatment. Clin. Cancer Res. 2018;24:1500–1510. doi: 10.1158/1078-0432.CCR-17-1181.
    1. Madhavan D., Wallwiener M., Bents K., Zucknick M., Nees J., Schott S., Cuk K., Riethdorf S., Trumpp A., Pantel K., et al. Plasma DNA integrity as a biomarker for primary and metastatic breast cancer and potential marker for early diagnosis. Breast Cancer Res. Treat. 2014;146:163–174. doi: 10.1007/s10549-014-2946-2.
    1. Coco S., Alama A., Vanni I., Fontana V., Genova C., Dal Bello M.G., Truini A., Rijavec E., Biello F., Sini C., et al. Circulating Cell-Free DNA and Circulating Tumor Cells as Prognostic and Predictive Biomarkers in Advanced Non-Small Cell Lung Cancer Patients Treated with First-Line Chemotherapy. Int. J. Mol. Sci. 2017;18:1035. doi: 10.3390/ijms18051035.
    1. Vo J.H., Nei W.L., Hu M., Phyo W.M., Wang F., Fong K.W., Tan T., Soong Y.L., Cheah S.L., Sommat K., et al. Comparison of Circulating Tumour Cells and Circulating Cell-Free Epstein-Barr Virus DNA in Patients with Nasopharyngeal Carcinoma Undergoing Radiotherapy. Sci. Rep. 2016;6:13. doi: 10.1038/s41598-016-0006-3.
    1. Chimonidou M., Strati A., Malamos N., Kouneli S., Georgoulias V., Lianidou E. Direct comparison study of DNA methylation markers in EpCAM-positive circulating tumour cells, corresponding circulating tumour DNA, and paired primary tumours in breast cancer. Oncotarget. 2017;8:72054–72068. doi: 10.18632/oncotarget.18679.
    1. Chimonidou M., Strati A., Malamos N., Georgoulias V., Lianidou E.S. SOX17 promoter methylation in circulating tumor cells and matched cell-free DNA isolated from plasma of patients with breast cancer. Clin. Chem. 2013;59:270–279. doi: 10.1373/clinchem.2012.191551.
    1. Keup C., Hahn P., Hauch S., Sprenger-Haussels M., Tewes M., Mach P., Bittner A.-K., Kimmig R., Kasimir-Bauer S., Benyaa K. Targeted PCR-based deep sequencing of cfDNA with unique molecular indices by a customized QIAseq Targeted DNA Panel. Protocols. 2018 doi: 10.17504/protocols.io.trfem3n.
    1. Hulsen T., de Vlieg J., Alkema W. BioVenn—A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genom. 2008;9:488. doi: 10.1186/1471-2164-9-488.
    1. Keup C., Benyaa K., Hauch S., Sprenger-Haussels M., Tewes M., Mach P., Bittner A.-K., Kimmig R., Hahn P., Kasimir-Bauer S. Variants in cell-free DNA of hormone receptor positive, HER2 negative metastatic breast cancer assessed by targeted deep sequencing. Cell. Mol. Life Sci. 2018 submitted.
    1. Antonarakis E.S., Lu C., Luber B., Wang H., Chen Y., Zhu Y., Silberstein J.L., Taylor M.N., Maughan B.L., Denmeade S.R., et al. Clinical Significance of Androgen Receptor Splice Variant-7 mRNA Detection in Circulating Tumor Cells of Men with Metastatic Castration-Resistant Prostate Cancer Treated with First- and Second-Line Abiraterone and Enzalutamide. J. Clin. Oncol. 2017;35:2149–2156. doi: 10.1200/JCO.2016.70.1961.
    1. Lehmann B.D., Bauer J.A., Schafer J.M., Pendleton C.S., Tang L., Johnson K.C., Chen X., Balko J.M., Gómez H., Arteaga C.L., et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 2014;16:406. doi: 10.1186/s13058-014-0406-x.
    1. Rahim B., O’Regan R. AR Signaling in Breast Cancer. Cancers. 2017;9:21. doi: 10.3390/cancers9030021.
    1. Wolff A.C., Hammond M.E.H., Hicks D.G., Dowsett M., McShane L.M., Allison K.H., Allred D.C., Bartlett J.M.S., Bilous M., Fitzgibbons P., et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch. Pathol. Lab. Med. 2014;138:241–256. doi: 10.5858/arpa.2013-0953-SA.
    1. Aktas B., Kasimir-Bauer S., Müller V., Janni W., Fehm T., Wallwiener D., Pantel K., Tewes M. Comparison of the HER2, estrogen and progesterone receptor expression profile of primary tumor, metastases and circulating tumor cells in metastatic breast cancer patients. BMC Cancer. 2016;16:522. doi: 10.1186/s12885-016-2587-4.
    1. Lianidou E., Pantel K. Liquid Biopsies. Genes Chromosomes Cancer. 2019;58:219–232. doi: 10.1002/gcc.22695.
    1. Bulfoni M., Gerratana L., Del Ben F., Marzinotto S., Sorrentino M., Turetta M., Scoles G., Toffoletto B., Isola M., Beltrami C.A., et al. In patients with metastatic breast cancer the identification of circulating tumor cells in epithelial-to-mesenchymal transition is associated with a poor prognosis. Breast Cancer Res. 2016;18:30. doi: 10.1186/s13058-016-0687-3.
    1. Spiliotaki M., Mavroudis D., Kapranou K., Markomanolaki H., Kallergi G., Koinis F., Kalbakis K., Georgoulias V., Agelaki S. Evaluation of proliferation and apoptosis markers in circulating tumor cells of women with early breast cancer who are candidates for tumor dormancy. Breast Cancer Res. 2014;16:485. doi: 10.1186/s13058-014-0485-8.
    1. Adams D.L., Adams D.K., Stefansson S., Haudenschild C., Martin S.S., Charpentier M., Chumsri S., Cristofanilli M., Tang C.-M., Alpaugh R.K. Mitosis in circulating tumor cells stratifies highly aggressive breast carcinomas. Breast Cancer Res. 2016;18:44. doi: 10.1186/s13058-016-0706-4.
    1. Antonarakis E.S., Lu C., Wang H., Luber B., Nakazawa M., Roeser J.C., Chen Y., Mohammad T.A., Chen Y., Fedor H.L., et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 2014;371:1028–1038. doi: 10.1056/NEJMoa1315815.
    1. Paolillo C., Mu Z., Rossi G., Schiewer M.J., Nguyen T., Austin L., Capoluongo E., Knudsen K.E., Cristofanilli M., Fortina P. Detection of Activating Estrogen Receptor Gene (ESR1) Mutations in Single Circulating Tumor Cells. Clin. Cancer Res. 2017;23:6086–6093. doi: 10.1158/1078-0432.CCR-17-1173.
    1. Reijm E.A., Sieuwerts A.M., Smid M., Vries J.B.-D., Mostert B., Onstenk W., Peeters D., Dirix L.Y., Seynaeve C.M., Jager A., et al. An 8-gene mRNA expression profile in circulating tumor cells predicts response to aromatase inhibitors in metastatic breast cancer patients. BMC Cancer. 2016;16:123. doi: 10.1186/s12885-016-2155-y.
    1. Beije N., Sieuwerts A.M., Kraan J., Van N.M., Onstenk W., Vitale S.R., van der Vlugt-Daane M., Dirix L.Y., Brouwer A., Hamberg P., et al. Estrogen receptor mutations and splice variants determined in liquid biopsies from metastatic breast cancer patients. Mol. Oncol. 2018;12:48–57. doi: 10.1002/1878-0261.12147.
    1. US Food & Drug Administration Premarket Approval, P150044—Cobas EGFR MUTATION TEST V2. [(accessed on 4 January 2019)];2016 Available online: .
    1. Bredemeier M., Edimiris P., Tewes M., Mach P., Aktas B., Schellbach D., Wagner J., Kimmig R., Kasimir-Bauer S. Establishment of a multimarker qPCR panel for the molecular characterization of circulating tumor cells in blood samples of metastatic breast cancer patients during the course of palliative treatment. Oncotarget. 2016;7:41677–41690. doi: 10.18632/oncotarget.9528.
    1. Quantify Agreement with Kappa. [(accessed on 18 December 2018)]; Available online: .

Source: PubMed

3
Sottoscrivi