iPlasticity: Induced juvenile-like plasticity in the adult brain as a mechanism of antidepressants

Juzoh Umemori, Frederike Winkel, Giuliano Didio, Maria Llach Pou, Eero Castrén, Juzoh Umemori, Frederike Winkel, Giuliano Didio, Maria Llach Pou, Eero Castrén

Abstract

The network hypothesis of depression proposes that mood disorders reflect problems in information processing within particular neural networks. Antidepressants (AD), including selective serotonin reuptake inhibitors (SSRI), function by gradually improving information processing within these networks. AD have been shown to induce a state of juvenile-like plasticity comparable to that observed during developmental critical periods: Such critical-period-like plasticity allows brain networks to better adapt to extrinsic and intrinsic signals. We have coined this drug-induced state of juvenile-like plasticity 'iPlasticity.' A combination of iPlasticity induced by chronic SSRI treatment together with training, rehabilitation, or psychotherapy improves symptoms of neuropsychiatric disorders and issues underlying the developmentally or genetically malfunctioning networks. We have proposed that iPlasticity might be a critical component of AD action. We have demonstrated that iPlasticity occurs in the visual cortex, fear erasure network, extinction of aggression caused by social isolation, and spatial reversal memory in rodent models. Chronic SSRI treatment is known to promote neurogenesis and to cause dematuration of granule cells in the dentate gyrus and of interneurons, especially parvalbumin interneurons enwrapped by perineuronal nets in the prefrontal cortex, visual cortex, and amygdala. Brain-derived neurotrophic factor (BDNF), via its receptor tropomyosin kinase receptor B, is involved in the processes of synaptic plasticity, including neurogenesis, neuronal differentiation, weight of synapses, and gene regulation of synaptic formation. BDNF can be activated by both chronic SSRI treatment and neuronal activity. Accordingly, the BDNF/tropomyosin kinase receptor B pathway is critical for iPlasticity, but further analyses will be needed to provide mechanical insight into the processes of iPlasticity.

Keywords: brain-derived neurotrophic factor/tropomyosin kinase receptor B; dematuration; neurogenesis; neuronal plasticity; parvalbumin/perineuronal nets.

© 2018 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

Figures

Figure 1
Figure 1
Concept of iPlasticity. Amy, amygdala; BDNF, brain‐derived neurotrophic factor; ChABC, chondroitinase ABC; DG, dentate gyrus; GC, granule cell; HNK, hydroxynorketamine; HP, hippocampus; PFC, prefrontal cortex; PV/PNN, parvalbumin/ perineuronal nets; TrkB, tropomyosin kinase receptor B.
Figure 2
Figure 2
Model of dematuration and adult neurogenesis in the dentate gyrus (DG) by chronic selective serotonin reuptake inhibitors (SSRI) treatment. The upper section indicates expression markers of each neuron state.102, 103 In the middle section, a mature neuron change to an immature state by dematuration after chronic SSRI treatment or electroconvulsive stimulation (ECS). In the bottom section, chronic SSRI treatment or environmental enrichment (EE) promote the proliferation of progenitor granule cells in the DG and rapid maturation of young adult‐born cells and integration into the DG. Finally, the matured adult‐born cell is functionally similar to other mature cells. The picture is combined and modified from Zhang and Jiao102 and Segi‐Nishida.103 DCX, doublecortin; ML, molecular layer; GL, granule layer; PSA‐NCAM, polysialic acid neural cell adhesion molecule; SGZ, subgranular zone. Copyright © 2017 Segi‐Nishida. Copyright © 2015 Juan Zhang and Jianwei Jiao.
Figure 3
Figure 3
Dematuration of parvalbumin (PV)/perineuronal nets (PNN) interneurons. PNN surround synaptic boutons on neuronal soma and proximal dendrites and consist of chondroitin sulfate proteoglycans (CSPG) assembled on the hyaluronan scaffold of PV interneurons. The development of PNN is controlled by synaptic activity and their formation terminates the critical period of synaptic plasticity, consolidating the neuronal network. CSPG has a unique geometric structure of polygonal mesh shapes with the number of vertices varying from three to nine. Sizes of the mesh vary.151 A reduction in PV (green) and PNN (blue) expression is associated with a plastic and immature network observed in iPlasticity by chronic SSRI treatment.
Figure 4
Figure 4
Brain‐derived neurotrophic factor (BDNF)/tropomyosin kinase receptor B (TrkB) pathway. BDNF is synthesized as a precursor protein (pro‐BDNF) that is proteolytically processed into mature BDNF by intracellular proteases and/or extracellular proteases.159, 160, 161 Synthesis, release, and action of BDNF are regulated by neuronal activity. BDNF mRNA increases after neuron depolarization162 and BDNF levels are mediated by calcium‐calmodulin‐dependent protein kinases (CaMK).163 TrkB is a tyrosine kinase membrane protein highly expressed in both presynaptic axons and postsynaptic densities.164, 165, 166 TrkB activation promotes spine formation, neuronal survival, and long‐term potentiation.167, 168, 169, 170, 171 TrkB consists of the following three main domains: an extracellular domain where the ligand (usually BDNF) binds, a transmembrane domain, and a cytosolic domain, which contains the catalytic sites that are responsible for a transphosphorylation reaction.172 Binding of BDNF to the recognition site increases its affinity for the TrkB monomer, stabilizing to form a TrkB dimer.173 This dimerization activates the catalytic sites, and each TrkB phosphorylates the other on specific tyrosine residues (Y706).174 Secondary messenger molecules (such as sarc homology containing [Shc] and phospholipase C gamma [PLCγ]) bind to the phospho‐tyrosines in positions 515 (Y515) and 816 (Y816) and activate the Ras/Erk and PIP3/Ca+2 dependent pathways, respectively. The latter pathway leads to activation of protein kinase C (PKC) and eventually to the phosphorylation of cyclic AMP response element binding protein (CREB).175 CREB in turn induces gene expression involved in neuroplasticity.176, 177, 178, 179, 180, 181, 182 Neuronal activation and high‐frequency stimulation facilitate the localization of TrkB from intracellular pools to the cell surface, requiring a Ca+2 influx.183 Akt, cellular homolog of murine thymoma virus akt8 oncogene; CBP, CREB‐binding protein; ERK, extracellular signal‐regulated kinase; P, phosphorylation.

References

    1. Hillhouse TM, Porter JH. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol. 2015; 23: 1–21.
    1. Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch. Gen. Psychiatry 1997; 54: 597–606.
    1. Castrén E. Is mood chemistry? Nat. Rev. Neurosci. 2005; 6: 241–246.
    1. Castrén E. Neuronal network plasticity and recovery from depression. JAMA Psychiatry 2013; 70: 983–989.
    1. Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science 1996; 274: 1133–1138.
    1. Hua JY, Smith SJ. Neural activity and the dynamics of central nervous system development. Nat. Neurosci. 2004; 7: 327–332.
    1. Knudsen EI. Sensitive periods in the development of the brain and behavior. J. Cogn. Neurosci. 2004; 16: 1412–1425.
    1. Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development. Curr. Opin. Neurobiol. 2000; 10: 138–145.
    1. Hensch TK. Critical period regulation. Annu. Rev. Neurosci. 2004; 27: 549–579.
    1. Hubel DH, Wiesel TN. Shape and arrangement of columns in cat's striate cortex. J. Physiol. 1963; 165: 559–568.
    1. Morishita H, Hensch TK. Critical period revisited: Impact on vision. Curr. Opin. Neurobiol. 2008; 18: 101–107.
    1. Hubel DH, Wiesel TN, LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1977; 278: 377–409.
    1. Huang Y‐Y, Colino A, Selig DK, Malenka RC. The influence of prior synaptic activity on the induction of long‐term potentiation. Science 1992; 255: 730–733.
    1. Cummings JA, Mulkey RM, Nicoll RA, Malenka RC. Ca 2+ signaling requirements for long‐term depression in the hippocampus. Neuron 1996; 16: 825–833.
    1. Govindarajan A, Kelleher RJ, Tonegawa S. A clustered plasticity model of long‐term memory engrams. Nat. Rev. Neurosci. 2006; 7: 575–583.
    1. Kroes MCW, Fernández G. Dynamic neural systems enable adaptive, flexible memories. Neurosci. Biobehav. Rev. 2012; 36: 1646–1666.
    1. Sale A, Berardi N, Maffei L. Environment and brain plasticity: Towards an endogenous pharmacotherapy. Physiol. Rev. 2014; 94: 189–234.
    1. Sale A, Maya Vetencourt JF, Medini P et al Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat. Neurosci. 2007; 10: 679–681.
    1. Castrén E, Hen R. Neuronal plasticity and antidepressant actions. Trends Neurosci. 2013; 36: 259–267.
    1. Chollet F, Tardy J, Albucher JF et al Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): A randomised placebo‐controlled trial. Lancet Neurol. 2011; 10: 123–130.
    1. Amin MM, Ban TA, Pecknold JC, Klingner A. Clomipramine (Anafranil) and behaviour therapy in obsessive‐compulsive and phobic disorders. J. Int. Med. Res. 1977; 5(Suppl 5): 33–37.
    1. Brent D, Emslie G, Clarke G et al Switching to another SSRI or to venlafaxine with or without cognitive behavioral therapy for adolescents with SSRI‐resistant depression: The TORDIA randomized controlled trial. JAMA 2008; 299: 901–913.
    1. Pampallona S, Bollini P, Tibaldi G, Kupelnick B, Munizza C. Combined pharmacotherapy and psychological treatment for depression: A systematic review. Arch. Gen. Psychiatry 2004; 61: 714–719.
    1. Chiarotti F, Viglione A, Giuliani A, Branchi I. Citalopram amplifies the influence of living conditions on mood in depressed patients enrolled in the STAR*D study. Transl. Psychiatry 2017; 7: e1066.
    1. Vetencourt JFM, Sale A, Viegi A et al The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 2008; 320: 385–388.
    1. Berardi N, Pizzorusso T, Ratto GM, Maffei L. Molecular basis of plasticity in the visual cortex. Trends Neurosci. 2003; 26: 369–378.
    1. Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, Kash SF. Local GABA circuit control of experience‐dependent plasticity in developing visual cortex. Science 1998; 282: 1504–1508.
    1. Fagiolini M, Fritschy J‐M, Löw K, Möhler H, Rudolph U, Hensch TK. Specific GABAA circuits for visual cortical plasticity. Science 2004; 303: 1681–1683.
    1. Iwai Y, Fagiolini M, Obata K, Hensch TK. Rapid critical period induction by tonic inhibition in visual cortex. J. Neurosci. 2003; 23: 6695–6702.
    1. Hanover JL, Huang ZJ, Tonegawa S, Stryker MP. Brain‐derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. J. Neurosci. 1999; 19: RC40.
    1. Gianfranceschi L, Siciliano R, Walls J et al Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proc. Natl. Acad. Sci. 2003; 100: 12486–12491.
    1. Castrén E, Rantamäki T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Dev. Neurobiol. 2010; 70: 289–297.
    1. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 2002; 298: 1248–1251.
    1. Lensjø KK, Lepperød ME, Dick G, Hafting T, Fyhn M. Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. J. Neurosci. 2017; 37: 1269–1283.
    1. Harauzov A, Spolidoro M, DiCristo G et al Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J. Neurosci. 2010; 30: 361–371.
    1. Hensch TK. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 2005; 6: 877–888.
    1. Pavlov IP. Conditioned reflex. Feldsher Akush. 1927; 11: 6–12.
    1. LeDoux J. The emotional brain, fear and the amygdala. Cell. Mol. Neurobiol. 2003; 23: 727–738.
    1. Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 2002; 420: 70–74.
    1. Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 1992; 106: 274–285.
    1. Bisson J, Andrew M. Psychological treatment of post‐traumatic stress disorder (PTSD). Cochrane Database Syst. Rev. 2005; 2: CD003388.
    1. Stein DJ, Ipser J, McAnda N. Pharmacotherapy of posttraumatic stress disorder: A review of meta‐analyses and treatment guidelines. CNS Spectr. 2009; 14(Suppl 1): 25–31.
    1. Karpova NN, Pickenhagen A, Lindholm J et al Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science 2011; 334: 1731–1734.
    1. Tóth M, Halász J, Mikics É, Barsy B, Haller J. Early social deprivation induces disturbed social communication and violent aggression in adulthood. Behav. Neurosci. 2008; 122: 849–854.
    1. Toth M, Mikics E, Tulogdi A, Aliczki M, Haller J. Post‐weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Horm. Behav. 2011; 60: 28–36.
    1. Sandi C, Haller J. Stress and the social brain: Behavioural effects and neurobiological mechanisms. Nat. Rev. Neurosci. 2015; 16: 290–304.
    1. Miczek KA, De Boer SF, Haller J. Excessive aggression as model of violence: A critical evaluation of current preclinical methods. Psychopharmacology (Berl.) 2013; 226: 445–458.
    1. Pascual R, Zamora‐León SP, Valero‐Cabré A. Effects of postweaning social isolation and re‐socialization on the expression of vasoactive intestinal peptide (VIP) and dendritic development in the medial prefrontal cortex of the rat. Acta Neurobiol. Exp. (Wars.) 2006; 66: 7–14.
    1. Wright IK, Upton N, Marsden CA. Resocialisation of isolation‐reared rats does not alter their anxiogenic profile on the elevated X‐maze model of anxiety. Physiol. Behav. 1991; 50: 1129–1132.
    1. Mikics É, Guirado R, Umemori J et al Social learning requires plasticity enhanced by fluoxetine through prefrontal Bdnf‐TrkB signaling to limit aggression induced by post‐weaning social isolation. Neuropsychopharmacology 2017; 43: 1–11.
    1. Nowakowska E, Kus K, Chodera A, Rybakowski J. Behavioural effects of fluoxetine and tianeptine, two antidepressants with opposite action mechanisms, in rats. Arzneimittelforschung 2000; 50: 5–10.
    1. Majlessi N, Naghdi N. Impaired spatial learning in the Morris water maze induced by serotonin reuptake inhibitors in rats. Behav. Pharmacol. 2002; 13: 237–242.
    1. Yau JL, Hibberd C, Noble J, Seckl JR. The effect of chronic fluoxetine treatment on brain corticosteroid receptor mRNA expression and spatial memory in young and aged rats. Brain Res. Mol. Brain Res. 2002; 106: 117–123.
    1. Valluzzi JA, Chan K. Effects of fluoxetine on hippocampal‐dependent and hippocampal‐independent learning tasks. Behav. Pharmacol. 2007; 18: 507–513.
    1. Akers KG, Martinez‐Canabal A, Restivo L et al Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 2014; 344: 598–602.
    1. Hamilton DA, Brigman JL. Behavioral flexibility in rats and mice: Contributions of distinct frontocortical regions. Genes Brain Behav. 2015; 14: 4–21.
    1. Codita A, Mohammed AH, Willuweit A et al Effects of spatial and cognitive enrichment on activity pattern and learning performance in three strains of mice in the IntelliMaze. Behav. Genet. 2012; 42: 449–460.
    1. Endo T, Maekawa F, Võikar V et al Automated test of behavioral flexibility in mice using a behavioral sequencing task in IntelliCage. Behav. Brain Res. 2011; 221: 172–181.
    1. Alboni S, Van Dijk RM, Poggini S et al Fluoxetine effects on molecular, cellular and behavioral endophenotypes of depression are driven by the living environment. Mol. Psychiatry 2017; 22: 552–561.
    1. Rantamäki T, Hendolin P, Kankaanpää A et al Pharmacologically diverse antidepressants rapidly activate brain‐derived neurotrophic factor receptor TrkB and induce phospholipase‐Cgamma signaling pathways in mouse brain. Neuropsychopharmacology 2007; 32: 2152–2162.
    1. McEwen BS, Chattarji S, Diamond DM et al The neurobiological properties of tianeptine (Stablon): From monoamine hypothesis to glutamatergic modulation. Mol. Psychiatry 2010; 15: 237–249.
    1. Abdallah CG, Sanacora G, Duman RS, Krystal JH. Ketamine and rapid‐acting antidepressants: A window into a new neurobiology for mood disorder therapeutics. Annu. Rev. Med. 2015; 66: 509–523.
    1. Ibrahim L, Diazgranados N, Luckenbaugh DA et al Rapid decrease in depressive symptoms with an N‐methyl‐d‐aspartate antagonist in ECT‐resistant major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011; 35: 1155–1159.
    1. DiazGranados N, Ibrahim LA, Brutsche NE et al Rapid resolution of suicidal ideation after a single infusion of an N‐methyl‐D‐aspartate antagonist in patients with treatment‐resistant major depressive disorder. J. Clin. Psychiatry 2010; 71: 1605–1611.
    1. Zarate CA, Machado‐Vieira R. Ketamine: Translating mechanistic discoveries into the next generation of glutamate modulators for mood disorders. Mol. Psychiatry 2017; 22: 324–327.
    1. Larkin GL, Beautrais AL. A preliminary naturalistic study of low‐dose ketamine for depression and suicide ideation in the emergency department. Int. J. Neuropsychopharmacol. 2011; 14: 1127–1131.
    1. Thakurta RG, Das R, Bhattacharya AK et al Rapid response with ketamine on suicidal cognition in resistant depression. Indian J. Psychol. Med. 2012; 34: 170–175.
    1. Berman RM, Cappiello A, Anand A et al Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 2000; 47: 351–354.
    1. Nestler EJ. Antidepressant treatments in the 21st century. Biol. Psychiatry 1998; 44: 526–533.
    1. Ju LS, Yang JJ, Lei L et al The combination of long‐term ketamine and extinction training contributes to fear erasure by Bdnf methylation. Front. Cell. Neurosci. 2017; 11: 100.
    1. Paul RK, Singh NS, Khadeer M et al (R,S)‐ketamine metabolites (R,S)‐norketamine and (2S,6S)‐hydroxynorketamine increase the mammalian target of rapamycin function. Anesthesiology 2014; 121: 149–159.
    1. Zanos P, Moaddel R, Morris PJ et al NMDAR inhibition‐independent antidepressant actions of ketamine metabolites. Nature 2016; 533: 481–486.
    1. Duman RS, Vaidya VA. Molecular and cellular actions of chronic electroconvulsive seizures. J. ECT 1998; 14: 181–193.
    1. Bouckaert F, Sienaert P, Obbels J et al ECT. J. ECT 2014; 30: 143–151.
    1. Abbott CC, Jones T, Lemke NT et al Hippocampal structural and functional changes associated with electroconvulsive therapy response. Transl. Psychiatry 2014; 4: e483.
    1. Dukart J, Regen F, Kherif F et al Electroconvulsive therapy‐induced brain plasticity determines therapeutic outcome in mood disorders. Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 1156–1161.
    1. Lindefors N, Brodin E, Metsis M. Spatiotemporal selective effects on brain‐derived neurotrophic factor and trkB messenger RNA in rat hippocampus by electroconvulsive shock. Neuroscience 1995; 65: 661–670.
    1. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 1995; 15: 7539–7547.
    1. Scott BW, Wojtowicz JM, Burnham WM. Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures. Exp. Neurol. 2000; 165: 231–236.
    1. Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingström A. Increased neurogenesis in a model of electroconvulsive therapy. Biol. Psychiatry 2000; 47: 1043–1049.
    1. Zhao C, Warner‐Schmidt J, Duman RS, Gage FH. Electroconvulsive seizure promotes spine maturation in newborn dentate granule cells in adult rat. Dev. Neurobiol. 2012; 72: 937–942.
    1. Vaidya VA, Siuciak JA, Du F, Duman RS. Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures. Neuroscience 1999; 89: 157–166.
    1. Chen F, Madsen TM, Wegener G, Nyengaard JR. Repeated electroconvulsive seizures increase the total number of synapses in adult male rat hippocampus. Eur. Neuropsychopharmacol. 2009; 19: 329–338.
    1. Morishita H, Miwa JM, Heintz N, Hensch TK. Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science 2010; 330: 1238–1240.
    1. Baroncelli L, Sale A, Viegi A et al Experience‐dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp. Neurol. 2010; 226: 100–109.
    1. Eckert MJ, Abraham WC. Effects of environmental enrichment exposure on synaptic transmission and plasticity in the hippocampus. Curr. Top. Behav. Neurosci. 2013; 15: 165–187.
    1. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997; 386: 493–495.
    1. Castrén E, Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol. Psychiatry 2017; 22: 1085–1095.
    1. Covington HE, Maze I, LaPlant QC et al Antidepressant actions of histone deacetylase inhibitors. J. Neurosci. 2009; 29: 11451–11460.
    1. Imayoshi I, Sakamoto M, Ohtsuka T et al Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat. Neurosci. 2008; 11: 1153–1161.
    1. Sahay A, Scobie KN, Hill AS et al Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 2011; 472: 466–470.
    1. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 2000; 20: 9104–9110.
    1. Santarelli L, Saxe M, Gross CT et al Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.
    1. Airan RD, Meltzer LA, Roy M, Gong Y, Chen H, Deisseroth K. High‐speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 2007; 317: 819–823.
    1. Li Y, Luikart BW, Birnbaum S et al TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 2008; 59: 399–412.
    1. David DJ, Samuels BA, Rainer Q et al Neurogenesis‐dependent and ‐independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 2009; 62: 479–493.
    1. David DJ, Wang J, Samuels BA et al Implications of the functional integration of adult‐born hippocampal neurons in anxiety‐depression disorders. Neuroscientist 2010; 16: 578–591.
    1. Holick KA, Lee DC, Hen R, Dulawa SC. Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology 2007; 33: 406–417.
    1. Huang G‐J, Bannerman D, Flint J. Chronic fluoxetine treatment alters behavior, but not adult hippocampal neurogenesis, in BALB/cJ mice. Mol. Psychiatry 2008; 13: 119–121.
    1. Murray F, Smith DW, Hutson PH. Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. Eur. J. Pharmacol. 2008; 583: 115–127.
    1. Wu X, Castrén E. Co‐treatment with diazepam prevents the effects of fluoxetine on the proliferation and survival of hippocampal dentate granule cells. Biol. Psychiatry 2009; 66: 5–8.
    1. Zhang J, Jiao J. Molecular biomarkers for embryonic and adult neural stem cell and neurogenesis. Biomed. Res. Int. 2015; 2015: 1–14.
    1. Segi‐Nishida E. The effect of serotonin‐targeting antidepressants on neurogenesis and neuronal maturation of the hippocampus mediated via 5‐HT1A and 5‐HT4 receptors. Front. Cell. Neurosci. 2017; 11: 1–7.
    1. Encinas JM, Vaahtokari A, Enikolopov G. Fluoxetine targets early progenitor cells in the adult brain. Proc. Natl. Acad. Sci. 2006; 103: 8233–8238.
    1. Hajszan T, MacLusky NJ, Leranth C. Short‐term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur. J. Neurosci. 2005; 21: 1299–1303.
    1. Ge S, Yang CH, Hsu KS, Ming GL, Song H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 2007; 54: 559–566.
    1. Schmidt‐Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 2004; 429: 184–187.
    1. Laplagne DA, Espósito MS, Piatti VC et al Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol. 2006; 4: 2349–2360.
    1. Wang J‐W, David DJ, Monckton JE, Battaglia F, Hen R. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult‐born hippocampal granule cells. J. Neurosci. 2008; 28: 1374–1384.
    1. Samuels BA, Anacker C, Hu A et al 5‐HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nat. Neurosci. 2015; 18: 1606–1616.
    1. Ardayfio P, Kim K‐S. Anxiogenic‐like effect of chronic corticosterone in the light‐dark emergence task in mice. Behav. Neurosci. 2006; 120: 249–256.
    1. Gourley SL, Kiraly DD, Howell JL, Olausson P, Taylor JR. Acute hippocampal brain‐derived neurotrophic factor restores motivational and forced swim performance after corticosterone. Biol. Psychiatry 2008; 64: 884–890.
    1. Bessa JM. A trans‐dimensional approach to the behavioral aspects of depression. Front. Behav. Neurosci. 2009; 3: 1.
    1. Spolidoro M, Baroncelli L, Putignano E, Maya‐Vetencourt JF, Viegi A, Maffei L. Food restriction enhances visual cortex plasticity in adulthood. Nat. Commun. 2011; 2: 320.
    1. Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat. Neurosci. 2007; 10: 1110–1115.
    1. Speisman RB, Kumar A, Rani A et al Environmental enrichment restores neurogenesis and rapid acquisition in aged rats. Neurobiol. Aging 2013; 34: 263–274.
    1. Segovia G, Yagüe AG, García‐Verdugo JM, Mora F. Environmental enrichment promotes neurogenesis and changes the extracellular concentrations of glutamate and GABA in the hippocampus of aged rats. Brain Res. Bull. 2006; 70: 8–14.
    1. Li N, Lee B, Liu R‐J et al mTOR‐dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010; 329: 959–964.
    1. Keilhoff G, Bernstein H‐G, Becker A, Grecksch G, Wolf G. Increased neurogenesis in a rat ketamine model of schizophrenia. Biol. Psychiatry 2004; 56: 317–322.
    1. Castro JE, Varea E, Márquez C, Cordero MI, Poirier G, Sandi C. Role of the amygdala in antidepressant effects on hippocampal cell proliferation and survival and on depression‐like behavior in the rat. PLoS One 2010; 5: e8618.
    1. Ohira K, Takeuchi R, Shoji H, Miyakawa T. Fluoxetine‐induced cortical adult neurogenesis. Neuropsychopharmacology 2013; 38: 909–920.
    1. Sachs BD, Caron MG. Chronic fluoxetine increases extra‐hippocampal neurogenesis in adult mice. Int. J. Neuropsychopharmacol. 2015; 18: 1–12.
    1. Surget A, Saxe M, Leman S et al Drug‐dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol. Psychiatry 2008; 64: 293–301.
    1. Petersén Å, Wörtwein G, Gruber SHM, El‐Khoury A, Mathé AA. Nortriptyline mediates behavioral effects without affecting hippocampal cytogenesis in a genetic rat depression model. Neurosci. Lett. 2009; 451: 148–151.
    1. Bessa JM, Ferreira D, Melo I et al The mood‐improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol. Psychiatry 2009; 14: 764–773.
    1. Kobayashi K, Ikeda Y, Sakai A et al Reversal of hippocampal neuronal maturation by serotonergic antidepressants. Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 8434–8439.
    1. Hagihara H, Takao K, Walton NM, Matsumoto M, Miyakawa T. Immature dentate gyrus: An endophenotype of neuropsychiatric disorders. Neural Plast. 2013; 2013: 318596.
    1. Doetsch F, Hen R. Young and excitable: The function of new neurons in the adult mammalian brain. Curr. Opin. Neurobiol. 2005; 15: 121–128.
    1. Imoto Y, Kira T, Sukeno M et al Role of the 5‐HT4 receptor in chronic fluoxetine treatment‐induced neurogenic activity and granule cell dematuration in the dentate gyrus. Mol. Brain 2015; 8: 29.
    1. Marchal C, Mulle C. Postnatal maturation of mossy fibre excitatory transmission in mouse CA3 pyramidal cells: A potential role for kainate receptors. J. Physiol. 2004; 561: 27–37.
    1. Imoto Y, Segi‐Nishida E, Suzuki H, Kobayashi K. Rapid and stable changes in maturation‐related phenotypes of the adult hippocampal neurons by electroconvulsive treatment. Mol. Brain 2017; 10: 8.
    1. Kobayashi K. Activity modifies adult brain maturity. Oncotarget 2017; 8: 46708–46709.
    1. Guirado R, Perez‐Rando M, Sanchez‐Matarredona D, Castrén E, Nacher J. Chronic fluoxetine treatment alters the structure, connectivity and plasticity of cortical interneurons. Int. J. Neuropsychopharmacol. 2014; 17: 1635–1646.
    1. Ohira K, Takeuchi R, Iwanaga T, Miyakawa T. Chronic fluoxetine treatment reduces parvalbumin expression and perineuronal nets in gamma‐aminobutyric acidergic interneurons of the frontal cortex in adult mice. Mol. Brain 2013; 6: 43.
    1. Yamasaki N, Maekawa M, Kobayashi K et al Alpha‐CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol. Brain 2008; 1: 6.
    1. Ohira K, Kobayashi K, Toyama K et al Synaptosomal‐associated protein 25 mutation induces immaturity of the dentate granule cells of adult mice. Mol. Brain 2013; 6: 12.
    1. Takao K, Kobayashi K, Hagihara H et al Deficiency of schnurri‐2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia. Neuropsychopharmacology 2013; 38: 1409–1425.
    1. Shin R, Kobayashi K, Hagihara H et al The immature dentate gyrus represents a shared phenotype of mouse models of epilepsy and psychiatric disease. Bipolar Disord. 2013; 15: 405–421.
    1. Mertens J, Wang QW, Kim Y et al Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 2015; 527: 95–99.
    1. Hagihara H, Ohira K, Takao K, Miyakawa T. Transcriptomic evidence for immaturity of the prefrontal cortex in patients with schizophrenia. Mol. Brain 2014; 7: 41.
    1. Murano T, Koshimizu H, Hagihara H, Miyakawa T. Transcriptomic immaturity of the hippocampus and prefrontal cortex in patients with alcoholism. Sci. Rep. 2017; 7: 44531.
    1. Kobayashi K, Ikeda Y, Suzuki H. Behavioral destabilization induced by the selective serotonin reuptake inhibitor fluoxetine. Mol. Brain 2011; 4: 12.
    1. Gogolla N, Caroni P, Lüthi A, Herry C. Perineuronal nets protect fear memories from erasure. Science 2009; 325: 1258–1261.
    1. Hensch TK, Fagiolini M. Excitatory‐inhibitory balance and critical period plasticity in developing visual cortex. Prog. Brain Res. 2004; 147: 115–124.
    1. Szabadics J, Varga C, Molnár G, Oláh S, Barzó P, Tamás G. Excitatory effect of GABAergic axo‐axonic cells in cortical microcircuits. Science 2006; 311: 233–235.
    1. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009; 459: 698–702.
    1. Hu H, Gan J, Interneurons JP. Fast‐spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function. Science 2014; 345: 1255263.
    1. Miyata S, Kitagawa H. Mechanisms for modulation of neural plasticity and axon regeneration by chondroitin sulphate. J. Biochem. 2015; 157: 13–22.
    1. Romberg C, Yang S, Melani R et al Depletion of perineuronal nets enhances recognition memory and long‐term depression in the perirhinal cortex. J. Neurosci. 2013; 33: 7057–7065.
    1. Wang D, Fawcett J. The perineuronal net and the control of CNS plasticity. Cell Tissue Res. 2012; 349: 147–160.
    1. Arnst N, Kuznetsova S, Lipachev N et al Spatial patterns and cell surface clusters in perineuronal nets. Brain Res. 2016; 1648: 214–223.
    1. Xue Y‐X, Xue L‐F, Liu J‐F et al Depletion of perineuronal nets in the amygdala to enhance the erasure of drug memories. J. Neurosci. 2014; 34: 6647–6658.
    1. Hylin MJ, Orsi SA, Moore AN, Dash PK. Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning. Learn. Mem. 2013; 20: 267–273.
    1. Donato F, Rompani SB, Caroni P. Parvalbumin‐expressing basket‐cell network plasticity induced by experience regulates adult learning. Nature 2013; 504: 272–276.
    1. Hensch TK. Bistable parvalbumin circuits pivotal for brain plasticity. Cell 2014; 156: 17–19.
    1. Cabungcal J‐H, Steullet P, Kraftsik R, Cuenod M, Do KQ. Early‐life insults impair parvalbumin interneurons via oxidative stress: Reversal by N‐acetylcysteine. Biol. Psychiatry 2013; 73: 574–582.
    1. Mikics É, Guirado R, Umemori J et al Social learning requires plasticity enhanced by fluoxetine through prefrontal Bdnf‐TrkB signaling to limit aggression induced by post‐weaning social isolation. Neuropsychopharmacology 2017; 43: 235–245.
    1. Castrén E, Kojima M. Brain‐derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol. Dis. 2017; 97: 119–126.
    1. Deinhardt K, Chao MV. Shaping neurons: Long and short range effects of mature and proBDNF signalling upon neuronal structure. Handb. Exp. Pharmacol. 2014; 220: 103–119.
    1. Seidaha NG, Benjannet S, Pareek S, Chrétien M, Murphy RA. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett. 1996; 379: 247–250.
    1. Wetsel WC, Rodriguiz RM, Guillemot J et al Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice. Proc. Natl. Acad. Sci. 2013; 110: 17362–17367.
    1. Zafra F, Hengerer B, Leibrock J, Thoenen H, Lindholm D. Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non‐NMDA glutamate receptors. EMBO J. 1990; 9: 3545–3550.
    1. Zafra F, Lindholm D, Castrén E, Hartikka J, Thoenen H. Regulation of brain‐derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J. Neurosci. 1992; 12: 4793–4799.
    1. Wu K, Xu JL, Suen PC et al Functional trkB neurotrophin receptors are intrinsic components of the adult brain postsynaptic density. Mol. Brain Res. 1996; 43: 286–290.
    1. Helgager J, Liu G, McNamara JO. The cellular and synaptic location of activated TrkB in mouse hippocampus during limbic epileptogenesis. J. Comp. Neurol. 2013; 521: 499–521.
    1. Xu B, Gottschalk W, Chow A et al The role of brain‐derived neurotrophic factor receptors in the mature hippocampus: Modulation of long‐term potentiation through a presynaptic mechanism involving TrkB. J. Neurosci. 2000; 20: 6888–6897.
    1. Teng HK. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and Sortilin. J. Neurosci. 2005; 25: 5455–5463.
    1. Woo NH, Teng HK, Siao C‐J et al Activation of p75NTR by proBDNF facilitates hippocampal long‐term depression. Nat. Neurosci. 2005; 8: 1069–1077.
    1. Zagrebelsky M. The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J. Neurosci. 2005; 25: 9989–9999.
    1. Koshimizu H, Kiyosue K, Hara T et al Multiple functions of precursor BDNF to CNS neurons: Negative regulation of neurite growth, spine formation and cell survival. Mol. Brain 2009; 2: 27.
    1. Deinhardt K, Kim T, Spellman DS et al Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Sci. Signal. 2011; 4: ra82.
    1. Klein R, Conway D, Parada LF, Barbacid M. The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 1990; 61: 647–656.
    1. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61: 203–212.
    1. Segal RA, Bhattacharyya A, Rua LA et al Differential utilization of Trk autophosphorylation sites. J. Biol. Chem. 1996; 271: 20175–20181.
    1. Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M. Mechanism of TrkB‐mediated hippocampal long‐term potentiation. Neuron 2002; 36: 121–137.
    1. Mabuchi T, Kitagawa K, Kuwabara K et al Phosphorylation of cAMP response element‐binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J. Neurosci. 2001; 21: 9204–9213.
    1. Reppert SM, Weaver DR. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 2001; 63: 647–676.
    1. Kandel ER. The molecular biology of memory storage: A dialogue between genes and synapses. Science 2001; 294: 1030–1038.
    1. West AE, Griffith EC, Greenberg ME. Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 2002; 3: 921–931.
    1. Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002; 35: 605–623.
    1. Kida S, Josselyn SA, Peña de Ortiz S et al CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 2002; 5: 348–355.
    1. Pittenger C, Huang YY, Paletzki RF et al Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus‐dependent spatial memory. Neuron 2002; 34: 447–462.
    1. Du J, Feng L, Yang F, Lu B. Activity‐ and Ca2+‐dependent modulation of surface expression of brain‐derived neurotrophic factor receptors in hippocampal neurons. J. Cell Biol. 2000; 150: 1423–1433.
    1. Buchman VL, Davies AM. Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development 1993; 118: 989–1001.
    1. Barde YA. Trophic factors and neuronal survival. Neuron 1989; 2: 1525–1534.
    1. Chao MV, Bothwell MA, Ross AH et al Gene transfer and molecular cloning of the human NGF receptor. Science 1986; 232: 518–521.
    1. Kaplan DR, Hempstead BL, Martin‐Zanca D, Chao MV, Parada LF. The trk proto‐oncogene product: A signal transducing receptor for nerve growth factor. Science 1991; 252: 554–558.
    1. Klein R, Nanduri V, Jing S et al The trkB tyrosine protein kinase is a receptor for brain‐derived neurotrophic factor and neurotrophin‐3. Cell 1991; 66: 395–403.
    1. Huang EJ, Reichardt LF. Trk receptors: Role in neuronal signal transduction. Annu. Rev. Plant Biol. 2003; 72: 609–642.
    1. Ibáñez CF, Simi A. P75 neurotrophin receptor signaling in nervous system injury and degeneration: Paradox and opportunity. Trends Neurosci. 2012; 35: 431–440.
    1. Radeke MJ, Misko TP, Hsu C, Herzenberg LA, Shooter EM. Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature 1987; 325: 593–597.
    1. Kraemer BR, Yoon SO, Carter BD. The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb. Exp. Pharmacol. 2014; 220: 121–164.
    1. Balu DT, Hoshaw BA, Malberg JE, Rosenzweig‐Lipson S, Schechter LE, Lucki I. Differential regulation of central BDNF protein levels by antidepressant and non‐antidepressant drug treatments. Brain Res. 2008; 1211: 37–43.
    1. Dias BG, Banerjee SB, Duman RS, Vaidya VA. Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology 2003; 45: 553–563.
    1. Russo‐Neustadt A, Beard RC, Cotman CW. Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 1999; 21: 679–682.
    1. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 2006; 9: 519–525.
    1. Altar CA, Whitehead RE, Chen R, Wörtwein G, Madsen TM. Effects of electroconvulsive seizures and antidepressant drugs on brain‐derived neurotrophic factor protein in rat brain. Biol. Psychiatry 2003; 54: 703–709.
    1. Rantamäki T, Vesa L, Antila H et al Antidepressant drugs transactivate trkb neurotrophin receptors in the adult rodent brain independently of Bdnf and monoamine transporter blockade. PLoS One 2011; 6: e20567.
    1. Gruart A, Sciarretta C, Valenzuela‐Harrington M, Delgado‐Garcia JM, Minichiello L. Mutation at the TrkB PLC‐docking site affects hippocampal LTP and associative learning in conscious mice. Learn. Mem. 2007; 14: 54–62.
    1. Autry AE, Monteggia LM. Brain‐derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev. 2012; 64: 238–258.
    1. Saarelainen T, Hendolin P, Lucas G et al Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant‐induced behavioral effects. J. Neurosci. 2003; 23: 349–357.
    1. Monteggia LM, Barrot M, Powell CM et al Essential role of brain‐derived neurotrophic factor in adult hippocampal function. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 10827–10832.
    1. Monteggia LM, Luikart B, Barrot M et al Brain‐derived neurotrophic factor conditional knockouts show gender differences in depression‐related behaviors. Biol. Psychiatry 2007; 61: 187–197.
    1. Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM. Selective loss of brain‐derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol. Psychiatry 2008; 63: 642–649.
    1. Lindholm JSO, Castrén E. Mice with altered BDNF signaling as models for mood disorders and antidepressant effects. Front. Behav. Neurosci. 2014; 8: 143.
    1. Shirayama Y, Chen AC‐H, Nakagawa S, Russell DS, Duman RS. Brain‐derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 2002; 22: 3251–3261.
    1. Koponen E, Rantamäki T, Voikar V, Saarelainen T, MacDonald E, Castrén E. Enhanced BDNF signaling is associated with an antidepressant‐like behavioral response and changes in brain monoamines. Cell. Mol. Neurobiol. 2005; 25: 973–980.
    1. Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. Biol. Psychiatry 1999; 46: 1181–1191.
    1. Chen AC, Shirayama Y, Shin KH, Neve RL, Duman RS. Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. Biol. Psychiatry 2001; 49: 753–762.
    1. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol. Psychiatry 2010; 50: 260–265.
    1. Autry AE, Adachi M, Nosyreva E et al NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011; 475: 91–96.
    1. Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK. Brain‐derived neurotrophic factor Val66Met allele impairs basal and ketamine‐stimulated synaptogenesis in prefrontal cortex. Biol. Psychiatry 2012; 71: 996–1005.
    1. Falkenberg T, Mohammed AK, Henriksson B, Persson H, Winblad B, Lindefors N. Increased expression of brain‐derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neurosci. Lett. 1992; 138: 153–156.
    1. Rossi C, Angelucci A, Costantin L et al Brain‐derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur. J. Neurosci. 2006; 24: 1850–1856.
    1. Zhu SW, Codita A, Bogdanovic N et al Influence of environmental manipulation on exploratory behaviour in male BDNF knockout mice. Behav. Brain Res. 2009; 197: 339–346.
    1. Banasr M, Duman RS. Keeping “Trk” of antidepressant actions. Neuron 2008; 59: 349–351.
    1. Sairanen M, Lucas G, Ernfors P, Castrén M, Castrén E. Brain‐derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J. Neurosci. 2005; 25: 1089–1094.
    1. Waterhouse EG, An JJ, Orefice LL et al BDNF promotes differentiation and maturation of adult‐born neurons through GABAergic transmission. J. Neurosci. 2012; 32: 14318–14330.
    1. Fukuchi M, Izumi H, Mori H et al Visualizing changes in brain‐derived neurotrophic factor (BDNF) expression using bioluminescence imaging in living mice. Sci. Rep. 2017; 7: 4949.
    1. Isackson PJ, Huntsman MM, Murray KD, Gall CM. BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: Temporal patterns of induction distinct from NGF. Neuron 1991; 6: 937–948.
    1. Castrén E, Zafra F, Thoenen H, Lindholm D. Light regulates expression of brain‐derived neurotrophic factor mRNA in rat visual cortex. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 9444–9448.
    1. Meyer‐Franke A, Wilkinson GA, Kruttgen A et al Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 1998; 21: 681–693.

Source: PubMed

3
Sottoscrivi