The TARC/sICAM5 Ratio in Patient Plasma is a Candidate Biomarker for Drug Resistant Epilepsy

John R Pollard, Ofer Eidelman, Gregory P Mueller, Clifton L Dalgard, Peter B Crino, Christopher T Anderson, Elizabeth J Brand, Evren Burakgazi, Sai K Ivaturi, Harvey B Pollard, John R Pollard, Ofer Eidelman, Gregory P Mueller, Clifton L Dalgard, Peter B Crino, Christopher T Anderson, Elizabeth J Brand, Evren Burakgazi, Sai K Ivaturi, Harvey B Pollard

Abstract

Epilepsy is a common affliction that involves inflammatory processes. There are currently no definitive chemical diagnostic biomarkers in the blood, so diagnosis is based on a sometimes expensive synthesis of clinical observation, radiology, neuro-psychological testing, and interictal and ictal EEG studies. Soluble ICAM5 (sICAM5), also known as telencephalin, is an anti-inflammatory protein of strictly central nervous system tissue origin that is also found in blood. Here we have tested the hypothesis that plasma concentrations of select inflammatory cytokines, including sICAM5, might serve as biomarkers for epilepsy diagnosis. To test this hypothesis, we developed a highly sensitive and accurate electrochemiluminescent ELISA assay to measure sICAM5 levels, and measured levels of sICAM5 and 18 other inflammatory mediators in epilepsy patient plasma and controls. Patient samples were drawn from in-patients undergoing video-EEG monitoring, without regard to timing of seizures. Differences were defined by t-test, and Receiver Operating Condition (ROC) curves determined the ability of these tests to distinguish between the two populations. In epilepsy patient plasmas, we found that concentrations of anti-inflammatory sICAM5 are reduced (p = 0.002) and pro-inflammatory IL-1β, IL-2, and IL-8 are elevated. TARC (thymus and activation regulated chemokine, CCL17) concentrations trend high. In contrast, levels of BDNF and a variety of other pro-inflammatory mediators are not altered. Based on p-value and ROC analysis, we find that the ratio of TARC/sICAM5 discriminates accurately between patients and controls, with an ROC Area Under the Curve (AUC) of 1.0 (p = 0.034). In conclusion, we find that the ratio of TARC to sICAM5 accurately distinguishes between the two populations and provides a statistically and mechanistically compelling candidate blood biomarker for drug resistant epilepsy.

Keywords: biomarkers; epilepsy; neuroinflammation.

Figures

Figure 1
Figure 1
Assay of sICAM5 in plasma from epilepsy patients and controls. (A) Dot-plot of sICAM5 concentrations in plasma (square, patients; diamond, controls). For values between the horizontal lines, the assay does not accurately discriminate between patients and controls. (B) Bar graph and error calculation for data in Part (A). Difference is significant for p = 0.002. (C) ROC curve for data in Part a, showing an area under the curve (AUC) value of 0.87.
Figure 2
Figure 2
Assay of IL-6 in plasma from epilepsy patients and controls. (A) Dot-plot of IL-6 concentrations in plasma (square, patients; diamond, controls). For values between the horizontal lines, the assay does not accurately discriminate between patients and controls. (B) Bar graph and error calculation for data in Part (A). Difference is not significant for p = 0.067. (C) ROC curve for data in Part a, showing an area under the curve (AUC) value of 0.81.
Figure 3
Figure 3
IL-6/sICAM5 ratio in plasma from epilepsy patients and controls. (A) Dot-plot of IL-6/sICAM5 concentrations in plasma (square, patients; diamond, controls). For values between the horizontal lines, the assay does not accurately discriminate between patients and controls. (B) Bar graph and error calculation for data in Part (A). Difference is not significant, with p = 0.087. (C) ROC curve for data in Part (A), showing an area under the curve (AUC) value of 0.90.
Figure 4
Figure 4
Assay of IL-8 in plasma from epilepsy patients and controls. (A) Dot-plot of IL-8 concentrations in plasma (square, patients; diamond, controls). For values between the horizontal lines, the assay does not accurately discriminate between patients and controls. (B) Bar graph and error calculation for data in Part (A). Difference is 1.4-fold, and significant for p = 0.020. (C) ROC curve for data in Part (A), showing an area under the curve (AUC) value of 0.75.
Figure 5
Figure 5
IL-8/sICAM5 ratio in plasma from epilepsy patients and controls. (A) Dot-plot of IL-8/sICAM5 concentrations in plasma (square, patients; diamond, controls). For values between the horizontal lines, the assay does not accurately discriminate between patients and controls. (B) Bar graph and error calculation for data in Part (A). Difference not significant, with p = 0.125. (C) ROC curve for data in Part (A), showing an area under the curve (AUC) value of 0.88.
Figure 6
Figure 6
Assay of TARC in plasma from epilepsy patients and controls. (A) Dot-plot of TARC concentrations in plasma (square, patients; diamond, controls). For values between the horizontal lines, the assay does not accurately discriminate between patients and controls. (B) Bar graph and error calculation for data in Part (A). Difference is not significant for p = 0.068. (C) ROC curve for data in Part (A), showing an area under the curve (AUC) value of 0.72.
Figure 7
Figure 7
TARC/sICAM5 ratio in plasma from epilepsy patients and controls. (A) Dot-plot of TARC/sICAM5 concentrations in plasma (square, patients; diamond, controls). There are no values between the horizontal lines, indicating the assay accurately discriminates between patients and controls. (B) Bar graph and error calculation for data in Part (A). Difference is 13-fold, and is significant for p = 0.034. (C) ROC curve for data in Part (A), showing an area under the curve (AUC) value of 1.00.

References

    1. Abbott R. J., Browning M. C., Davidson D. L. (1980). Serum prolactin and cortisol concentrations after grand mal seizures. J. Neurol. Neurosurg. Psychiatr. 43, 163–16710.1136/jnnp.43.2.163
    1. Alapirtti T., Rinta S., Hulkkonen J., Makinen R., Keranen T., Peltola J. (2009). Interleukin-6, interleukin-1 receptor antagonist and interleukin-1beta production in patients with focal epilepsy: a video-EEG study. J. Neurol. Sci. 280, 94–9710.1016/j.jns.2009.02.355
    1. Alapirtti T., Waris M., Fallah M., Soilu-Hanninen M., Makinen R., Kharazmi E., et al. (2012). C-reactive protein and seizures in focal epilepsy: a video-electroencephalographic study. Epilepsia 53, 790–79610.1111/j.1528-1167.2012.03449.x
    1. Arii N., Mizuguchi M., Mori K., Takashima S. (1999). Development of telencephalin in the human cerebrum. Microsc. Res. Tech. 46, 18–2310.1002/(SICI)1097-0029(19990701)46:1<18::AID-JEMT2>;2-7
    1. Aronica E., Crino P. B. (2011). Inflammation in epilepsy: clinical observations. Epilepsia 52(Suppl. 3), 26–3210.1111/j.1528-1167.2011.03033.x
    1. Balosso S., Maroso M., Sanchez-Alavez M., Ravizza T., Frasca A., Bartfai T., et al. (2008). A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. Brain 131, 3256–326510.1093/brain/awn271
    1. Bauer S., Cepok S., Todorova-Rudolph A., Nowak M., Koller M., Lorenz R., et al. (2009). Etiology and site of temporal lobe epilepsy influence postictal cytokine release. Epilepsy Res. 86, 82–8810.1016/j.eplepsyres.2009.05.009
    1. Beghi E., Shorvon S. (2011). Antiepileptic drugs and the immune system. Epilepsia 52(Suppl. 3), 40–4410.1111/j.1528-1167.2011.03035.x
    1. Benson D. L., Yoshihara Y., Mori K. (1998). Polarized distribution and cell type-specific localization of telencephalin, an intercellular adhesion molecule. J. Neurosci. Res. 52, 43–5310.1002/(SICI)1097-4547(19980401)52:1<43::AID-JNR5>;2-A
    1. Conant K., Wang Y., Szklarczyk A., Dudak A., Mattson M. P., Lim S. T. (2010). Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neuroscience 166, 508–52110.1016/j.neuroscience.2009.12.061
    1. Engel J., Jr. (2001). A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on classification and terminology. Epilepsia 42, 796–80310.1046/j.1528-1157.2001.0420s6003.x
    1. Engel J., Jr. (2011). Biomarkers in epilepsy: introduction. Biomark. Med. 5, 537–54410.2217/bmm.11.62
    1. England M. J., Liverman C. T., Schultz A. M., Strawbridge L. M., Committee on the Public Health Dimensions of the Epilepsies, Board on Health Sciences Policy, and Institute of Medicine (eds). (2012). Epilepsy Across the Spectrum: Promoting Health and Understanding (Washington: The National Archives Press; ).
    1. Fabene P. F., Navarro Mora G., Martinello M., Rossi B., Merigo F., Ottoboni L., et al. (2008). A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat. Med. 14, 1377–138310.1038/nm.1878
    1. Furutani Y., Matsuno H., Kawasaki M., Sasaki T., Mori K., Yoshihara Y. (2007). Interaction between telencephalin and ERM family proteins mediates dendritic filopodia formation. J. Neurosci. 27, 8866–887610.1523/JNEUROSCI.1047-07.2007
    1. Galic M. A., Riazi K., Pittman Q. J. (2012). Cytokines and brain excitability. Front. Neuroendocrinol 33, 116–12510.1016/j.yfrne.2011.12.002
    1. Hauser W. A., Annegers J. F., Kurland L. T. (1993). Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 34, 453–46810.1111/j.1528-1157.1993.tb02586.x
    1. Imai T., Baba M., Nishimura M., Kakizaki M., Takagi S., Yoshie O. (1997). The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J. Biol. Chem. 272, 15036–1504210.1074/jbc.272.4.2446
    1. Imai T., Yoshida T., Baba M., Nishimura M., Kakizaki M., Yoshie O. (1996). Molecular cloning of a novel T cell-directed CC chemokine expressed in thymus by signal sequence trap using Epstein-Barr virus vector. J. Biol. Chem. 271, 21514–2152110.1074/jbc.271.35.21514
    1. Iyer A., Zurolo E., Spliet W. G., Van Rijen P. C., Baayen J. C., Gorter J. A., et al. (2010). Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias. Epilepsia 51, 1763–177310.1111/j.1528-1167.2010.02547.x
    1. Jansen J. F., Vlooswijk M. C., De Baets M. H., De Krom M. C., Rieckmann P., Backes W. H., et al. (2008). Cognitive fMRI and soluble telencephalin assessment in patients with localization-related epilepsy. Acta Neurol. Scand. 118, 232–23910.1111/j.1600-0404.2008.01005.x
    1. Kipnis J., Cohen H., Cardon M., Ziv Y., Schwartz M. (2004). T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc. Natl. Acad. Sci. U.S.A. 101, 8180–818510.1073/pnas.0404842101
    1. Kusterer K., Bojunga J., Enghofer M., Heidenthal E., Usadel K. H., Kolb H., et al. (1998). Soluble ICAM-1 reduces leukocyte adhesion to vascular endothelium in ischemia-reperfusion injury in mice. Am. J. Physiol. 275, G377–G380
    1. Lehtimaki K. A., Keranen T., Palmio J., Makinen R., Hurme M., Honkaniemi J., et al. (2007). Increased plasma levels of cytokines after seizures in localization-related epilepsy. Acta Neurol. Scand. 116, 226–23010.1111/j.1600-0404.2007.00882.x
    1. Lehtimaki K. A., Keranen T., Palmio J., Peltola J. (2010). Levels of IL-1beta and IL-1ra in cerebrospinal fluid of human patients after single and prolonged seizures. Neuroimmunomodulation 17, 19–2210.1159/000243081
    1. Lindsberg P. J., Launes J., Tian L., Valimaa H., Subramanian V., Siren J., et al. (2002). Release of soluble ICAM-5, a neuronal adhesion molecule, in acute encephalitis. Neurology 58, 446–45110.1212/WNL.58.3.446
    1. Majoie H. J., Rijkers K., Berfelo M. W., Hulsman J. A., Myint A., Schwarz M., et al. (2010). Vagus nerve stimulation in refractory epilepsy: effects on pro- and anti-inflammatory cytokines in peripheral blood. Neuroimmunomodulation 18, 52–5610.1159/000315530
    1. Maroso M., Balosso S., Ravizza T., Liu J., Aronica E., Iyer A. M., et al. (2010). Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat. Med. 16, 413–41910.1038/nm.2127
    1. Mendez M. P., Morris S. B., Wilcoxen S., Du M., Monroy Y. K., Remmer H., et al. (2008). Disparate mechanisms of sICAM-1 production in the peripheral lung: contrast between alveolar epithelial cells and pulmonary microvascular endothelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 294, L807–L81410.1152/ajplung.00398.2007
    1. Mizuno T., Yoshihara Y., Inazawa J., Kagamiyama H., Mori K. (1997). cDNA cloning and chromosomal localization of the human telencephalin and its distinctive interaction with lymphocyte function-associated antigen-1. J. Biol. Chem. 272, 1156–116310.1074/jbc.272.2.1156
    1. Mizuno T., Yoshihara Y., Kagamiyama H., Ohsawa K., Imai Y., Kohsaka S., et al. (1999). Neuronal adhesion molecule telencephalin induces rapid cell spreading of microglia. Brain Res. 849, 58–6610.1016/S0006-8993(99)01984-8
    1. Ortinski P. I., Dong J., Mungenast A., Yue C., Takano H., Watson D. J., et al. (2010). Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat. Neurosci. 13, 584–59110.1038/nn.2535
    1. Palmio J., Keranen T., Alapirtti T., Hulkkonen J., Makinen R., Holm P., et al. (2008). Elevated serum neuron-specific enolase in patients with temporal lobe epilepsy: a video-EEG study. Epilepsy Res. 81, 155–16010.1016/j.eplepsyres.2008.05.006
    1. Peltola J., Palmio J., Korhonen L., Suhonen J., Miettinen A., Hurme M., et al. (2000). Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res. 41, 205–21110.1016/S0920-1211(00)00140-6
    1. Rieckmann P., Turner T., Kligannon P., Steinhoff B. J. (1998). Telencephalin as an indicator for temporal-lobe dysfunction. Lancet 352, 370–37110.1016/S0140-6736(05)60469-2
    1. Schwartz M., Kipnis J. (2011). A conceptual revolution in the relationships between the brain and immunity. Brain Behav. Immun. 25, 817–81910.1016/j.bbi.2010.12.015
    1. Srivastava M., Eidelman O., Torosyan Y., Jozwik C., Mannon R. B., Pollard H. B. (2011). Elevated expression levels of ANXA11, integrins beta3 and alpha3, and TNF-alpha contribute to a candidate proteomic signature in urine for kidney allograft rejection. Proteomics. Clin. Appl. 5, 311–32110.1002/prca.201000109
    1. Tian L., Kilgannon P., Yoshihara Y., Mori K., Gallatin W. M., Carpen O., et al. (2000). Binding of T lymphocytes to hippocampal neurons through ICAM-5 (telencephalin) and characterization of its interaction with the leukocyte integrin CD11a/CD18. Eur. J. Immunol. 30, 810–81810.1002/1521-4141(200003)30:3<810::AID-IMMU810>;2-X
    1. Tian L., Lappalainen J., Autero M., Hanninen S., Rauvala H., Gahmberg C. G. (2008). Shedded neuronal ICAM-5 suppresses T-cell activation. Blood 111, 3615–362510.1182/blood-2007-09-111179
    1. Tian L., Stefanidakis M., Ning L., Van Lint P., Nyman-Huttunen H., Libert C., et al. (2007). Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage. J. Cell Biol. 178, 687–70010.1083/jcb.200612097
    1. Vezzani A., Friedman A. (2011). Brain inflammation as a biomarker in epilepsy. Biomark. Med. 5, 607–61410.2217/bmm.11.61
    1. Vezzani A., Granata T. (2005). Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46, 1724–174310.1111/j.1528-1167.2005.00298.x
    1. Vezzani A., Ravizza T., Balosso S., Aronica E. (2008). Glia as a source of cytokines: implications for neuronal excitability and survival. Epilepsia 49(Suppl. 2), 24–3210.1111/j.1528-1167.2007.01439_1.x
    1. Yoshihara Y., Mori K. (1994). Telencephalin: a neuronal area code molecule? Neurosci. Res. 21, 119–12410.1016/0168-0102(94)90153-8
    1. Yoshihara Y., Oka S., Nemoto Y., Watanabe Y., Nagata S., Kagamiyama H., Mori K., et al. (1994). An ICAM-related neuronal glycoprotein, telencephalin, with brain segment-specific expression. Neuron 12, 541–55310.1016/0896-6273(94)90211-9
    1. Ziv Y., Ron N., Butovsky O., Landa G., Sudai E., Greenberg N., et al. (2006). Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 9, 268–27510.1038/nn1629

Source: PubMed

3
Sottoscrivi