Microstructural imaging in temporal lobe epilepsy: Diffusion imaging changes relate to reduced neurite density

Gavin P Winston, Sjoerd B Vos, Benoit Caldairou, Seok-Jun Hong, Monika Czech, Tobias C Wood, Stephen J Wastling, Gareth J Barker, Boris C Bernhardt, Neda Bernasconi, John S Duncan, Andrea Bernasconi, Gavin P Winston, Sjoerd B Vos, Benoit Caldairou, Seok-Jun Hong, Monika Czech, Tobias C Wood, Stephen J Wastling, Gareth J Barker, Boris C Bernhardt, Neda Bernasconi, John S Duncan, Andrea Bernasconi

Abstract

Purpose: Previous imaging studies in patients with refractory temporal lobe epilepsy (TLE) have examined the spatial distribution of changes in imaging parameters such as diffusion tensor imaging (DTI) metrics and cortical thickness. Multi-compartment models offer greater specificity with parameters more directly related to known changes in TLE such as altered neuronal density and myelination. We studied the spatial distribution of conventional and novel metrics including neurite density derived from NODDI (Neurite Orientation Dispersion and Density Imaging) and myelin water fraction (MWF) derived from mcDESPOT (Multi-Compartment Driven Equilibrium Single Pulse Observation of T1/T2)] to infer the underlying neurobiology of changes in conventional metrics.

Methods: 20 patients with TLE and 20 matched controls underwent magnetic resonance imaging including a volumetric T1-weighted sequence, multi-shell diffusion from which DTI and NODDI metrics were derived and a protocol suitable for mcDESPOT fitting. Models of the grey matter-white matter and grey matter-CSF surfaces were automatically generated from the T1-weighted MRI. Conventional diffusion and novel metrics of neurite density and MWF were sampled from intracortical grey matter and subcortical white matter surfaces and cortical thickness was measured.

Results: In intracortical grey matter, diffusivity was increased in the ipsilateral temporal and frontopolar cortices with more restricted areas of reduced neurite density. Diffusivity increases were largely related to reductions in neurite density, and to a lesser extent CSF partial volume effects, but not MWF. In subcortical white matter, widespread bilateral reductions in fractional anisotropy and increases in radial diffusivity were seen. These were primarily related to reduced neurite density, with an additional relationship to reduced MWF in the temporal pole and anterolateral temporal neocortex. Changes were greater with increasing epilepsy duration. Bilaterally reduced cortical thickness in the mesial temporal lobe and centroparietal cortices was unrelated to neurite density and MWF.

Conclusions: Diffusivity changes in grey and white matter are primarily related to reduced neurite density with an additional relationship to reduced MWF in the temporal pole. Neurite density may represent a more sensitive and specific biomarker of progressive neuronal damage in refractory TLE that deserves further study.

Keywords: Diffusion imaging; Multi-compartment models; Myelination; Neurite density; Temporal lobe epilepsy.

Conflict of interest statement

Declarations of Competing Interest None.

Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Image processing framework. Grey matter-white matter and grey matter-CSF cortical surfaces were extracted from the T1-weighted image (top, cyan and blue respectively) and midcortical and 2 mm subcortical surfaces were generated using a Laplacian potential (top, red and green respectively). These surfaces were registered to diffusion and DESPOT space using the FA image (middle left) and IR-SPGR (middle right) respectively. Measurements from diffusion and DESPOT scans were sampled along these surfaces (bottom). Examples of mean values in patients on the two surfaces are shown for diffusion (FA, MD, ICVF) and DESPOT (MWF) scans.
Fig. 2
Fig. 2
Intracortical grey matter (main and regression findings). Group comparisons show that in patients mean diffusivity was increased in ipsilateral temporal and frontopolar regions (A) whilst reduced neurite density was more confined to mesial and basal temporal regions (B). Linear regression showed that increased mean diffusivity was related to both CSF fraction (C) and neurite density (D). Uncorrected p-values shown for significant clusters (defined by FWE 0.05, cluster threshold 0.01).
Fig. 3
Fig. 3
Subcortical white matter (main findings). Group comparisons show that in patients, bilateral reductions in FA were observed in temporal and frontopolar regions (A) with a similar distribution of increased RD (B) and reduced neurite density (C). Reduced myelin fraction (D) was more confined to the ipsilateral temporal lobe. Uncorrected p-values shown for significant clusters (defined by FWE 0.05, cluster threshold 0.01).
Fig. 4
Fig. 4
Subcortical white matter (regression findings). Linear regression showed that reduced FA in the ipsilateral temporal lobe is associated with axonal loss (A) with an additional relationship to altered myelination in the temporal pole and anterolateral temporal neocortex (B). A similar pattern was observed for the increase in RD (C,D). Neurite density in the temporal pole was more reduced with longer disease duration (E, shown with an outlier removed). Uncorrected p-values shown for significant clusters (defined by FWE 0.05, cluster threshold 0.01).

References

    1. Adachi Y., Yagishita A., Arai N. White matter abnormalities in the anterior temporal lobe suggest the side of the seizure foci in temporal lobe epilepsy. Neuroradiology. 2006;48(7):460–464.
    1. Alvim M.K., Coan A.C., Campos B.M., Yasuda C.L., Oliveira M.C., Morita M.E. Progression of gray matter atrophy in seizure-free patients with temporal lobe epilepsy. Epilepsia. 2016;57(4):621–629.
    1. Andersson J.L.R., Sotiropoulos S.N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–1078.
    1. Andersson J.L., Skare S., Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20(2):870–888.
    1. Arfanakis K., Hermann B.P., Rogers B.P., Carew J.D., Seidenberg M., Meyerand M.E. Diffusion tensor MRI in temporal lobe epilepsy. Magn. Reson. Imaging. 2002;20(7):511–519.
    1. Bernasconi N. Is epilepsy a curable neurodegenerative disease? Brain. 2016;139(Pt 9):2336–2337.
    1. Bernhardt B.C., Worsley K.J., Kim H., Evans A.C., Bernasconi A., Bernasconi N. Longitudinal and cross-sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology. 2009;72(20):1747–1754.
    1. Bernhardt B.C., Bernasconi N., Concha L., Bernasconi A. Cortical thickness analysis in temporal lobe epilepsy: reproducibility and relation to outcome. Neurology. 2010;74(22):1776–1784.
    1. Bernhardt B.C., Bernasconi N., Kim H., Bernasconi A. Mapping thalamocortical network pathology in temporal lobe epilepsy. Neurology. 2012;78(2):129–136.
    1. Bernhardt B.C., Bonilha L., Gross D.W. Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy. Epilepsy. Behav. 2015;50:162–170.
    1. Bernhardt B.C., Fadaie F., Vos de Wael R., Hong S.J., Liu M., Guiot M.C. Preferential susceptibility of limbic cortices to microstructural damage in temporal lobe epilepsy: a quantitative T1 mapping study. Neuroimage. 2018;182:294–303.
    1. Blanc F., Martinian L., Liagkouras I., Catarino C., Sisodiya S.M., Thom M. Investigation of widespread neocortical pathology associated with hippocampal sclerosis in epilepsy: a postmortem study. Epilepsia. 2011;52(1):10–21.
    1. Blumcke I., Thom M., Aronica E., Armstrong D.D., Bartolomei F., Bernasconi A. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods. Epilepsia. 2013;54(7):1315–1329.
    1. Bonilha L., Rorden C., Appenzeller S., Coan A.C., Cendes F., Li L.M. Gray matter atrophy associated with duration of temporal lobe epilepsy. Neuroimage. 2006;32(3):1070–1079.
    1. Bonilha L., Rorden C., Halford J.J., Eckert M., Appenzeller S., Cendes F. Asymmetrical extra-hippocampal grey matter loss related to hippocampal atrophy in patients with medial temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry. 2007;78(3):286–294.
    1. Bonilha L., Edwards J.C., Kinsman S.L., Morgan P.S., Fridriksson J., Rorden C. Extrahippocampal gray matter loss and hippocampal deafferentation in patients with temporal lobe epilepsy. Epilepsia. 2010;51(4):519–528.
    1. Bouhrara M., Spencer R.G. Incorporation of nonzero echo times in the SPGR and bSSFP signal models used in mcDESPOT. Magn. Reson. Med. 2015;74(5):1227–1235.
    1. Cavanagh J.B., Meyer A. Aetiological aspects of Ammon's horn sclerosis associated with temporal lobe epilepsy. Br. Med. J. 1956;2(5006):1403–1407.
    1. Choi D., Na D.G., Byun H.S., Suh Y.L., Kim S.E., Ro D.W. White-matter change in mesial temporal sclerosis: correlation of MRI with PET, pathology, and clinical features. Epilepsia. 1999;40(11):1634–1641.
    1. Coan A.C., Appenzeller S., Bonilha L., Li L.M., Cendes F. Seizure frequency and lateralization affect progression of atrophy in temporal lobe epilepsy. Neurology. 2009;73(11):834–842.
    1. Coan A.C., Campos B.M., Yasuda C.L., Kubota B.Y., Bergo F.P., Guerreiro C.A. Frequent seizures are associated with a network of gray matter atrophy in temporal lobe epilepsy with or without hippocampal sclerosis. PLoS ONE. 2014;9(1):e85843.
    1. Concha L., Beaulieu C., Gross D.W. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Ann. Neurol. 2005;57(2):188–196.
    1. Concha L., Beaulieu C., Wheatley B.M., Gross D.W. Bilateral white matter diffusion changes persist after epilepsy surgery. Epilepsia. 2007;48(5):931–940.
    1. Concha L., Livy D.J., Beaulieu C., Wheatley B.M., Gross D.W. In vivo diffusion tensor imaging and histopathology of the fimbria-fornix in temporal lobe epilepsy. J. Neurosci. 2010;30(3):996–1002.
    1. Concha L., Kim H., Bernasconi A., Bernhardt B.C., Bernasconi N. Spatial patterns of water diffusion along white matter tracts in temporal lobe epilepsy. Neurology. 2012;79(5):455–462.
    1. Dabbs K., Becker T., Jones J., Rutecki P., Seidenberg M., Hermann B. Brain structure and aging in chronic temporal lobe epilepsy. Epilepsia. 2012;53(6):1033–1043.
    1. de Campos B.M., Coan A.C., Lin Yasuda C., Casseb R.F., Cendes F. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy. Hum. Brain Mapp. 2016;37(9):3137–3152.
    1. Deoni S.C., Rutt B.K., Peters T.M. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn. Reson. Med. 2003;49(3):515–526.
    1. Deoni S.C., Rutt B.K., Arun T., Pierpaoli C., Jones D.K. Gleaning multicomponent T1 and T2 information from steady-state imaging data. Magn. Reson Med. 2008;60(6):1372–1387.
    1. Deoni S.C., Matthews L., Kolind S.H. One component? Two components? Three? The effect of including a nonexchanging "free" water component in multicomponent driven equilibrium single pulse observation of T1 and T2. Magn. Reson Med. 2013;70(1):147–154.
    1. Deoni S.C. High-resolution T1 mapping of the brain at 3T with driven equilibrium single pulse observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-HIFI) J. Magn. Reson. Imaging. 2007;26(4):1106–1111.
    1. Deoni S.C. Transverse relaxation time (T2) mapping in the brain with off-resonance correction using phase-cycled steady-state free precession imaging. J. Magn. Reson. Imaging. 2009;30(2):411–417.
    1. Eriksson S.H., Nordborg C., Thom M., Sisodiya S.M. Microdysgenesis in mesial temporal lobe epilepsy. Ann. Neurol. 2004;55(4):596–597. author reply 7.
    1. Falconer M.A., Serafetinides E.A., Corsellis J.A. Etiology and pathogenesis of temporal lobe epilepsy. Arch. Neurol. 1964;10:233–248.
    1. Focke N.K., Yogarajah M., Bonelli S.B., Bartlett P.A., Symms M.R., Duncan J.S. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Neuroimage. 2008;40(2):728–737.
    1. Fonov VSE A.C., McKinstry R.C., Almli C.R., Collins D.L. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage. 2009;47(Supplement 1):S102.
    1. Galovic M., van Dooren V.Q.H., Postma T., Vos S.B., Caciagli L., Borzi G. Progressive cortical thinning in patients with focal epilepsy. JAMA Neurol. 2019
    1. Garbelli R., Milesi G., Medici V., Villani F., Didato G., Deleo F. Blurring in patients with temporal lobe epilepsy: clinical, high-field imaging and ultrastructural study. Brain. 2012;135(Pt 8):2337–2349.
    1. Gross D.W., Concha L., Beaulieu C. Extratemporal white matter abnormalities in mesial temporal lobe epilepsy demonstrated with diffusion tensor imaging. Epilepsia. 2006;47(8):1360–1363.
    1. Hardiman O., Burke T., Phillips J., Murphy S., O'Moore B., Staunton H. Microdysgenesis in resected temporal neocortex: incidence and clinical significance in focal epilepsy. Neurology. 1988;38(7):1041–1047.
    1. Jeurissen B., Leemans A., Tournier J.D., Jones D.K., Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum. Brain Mapp. 2013;34(11):2747–2766.
    1. Jones D.K., Knosche T.R., Turner R. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. Neuroimage. 2013;73:239–254.
    1. Kasper B.S., Stefan H., Paulus W. Microdysgenesis in mesial temporal lobe epilepsy: a clinicopathological study. Ann. Neurol. 2003;54(4):501–506.
    1. Keller S.S., Roberts N. Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia. 2008;49(5):741–757.
    1. Keller S.S., Mackay C.E., Barrick T.R., Wieshmann U.C., Howard M.A., Roberts N. Voxel-based morphometric comparison of hippocampal and extrahippocampal abnormalities in patients with left and right hippocampal atrophy. Neuroimage. 2002;16(1):23–31.
    1. Keller S.S., Schoene-Bake J.C., Gerdes J.S., Weber B., Deppe M. Concomitant fractional anisotropy and volumetric abnormalities in temporal lobe epilepsy: cross-sectional evidence for progressive neurologic injury. PLoS ONE. 2012;7(10):e46791.
    1. Keller S.S., O'Muircheartaigh J., Traynor C., Towgood K., Barker G.J., Richardson M.P. Thalamotemporal impairment in temporal lobe epilepsy: a combined mri analysis of structure, integrity, and connectivity. Epilepsia. 2014;55(2):306–315.
    1. Kemmotsu N., Girard H.M., Bernhardt B.C., Bonilha L., Lin J.J., Tecoma E.S. MRI analysis in temporal lobe epilepsy: cortical thinning and white matter disruptions are related to side of seizure onset. Epilepsia. 2011;52(12):2257–2266.
    1. Kim J.S., Singh V., Lee J.K., Lerch J., Ad-Dab'bagh Y., MacDonald D. Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage. 2005;27(1):210–221.
    1. Kim H., Caldairou B., Hwang J.W., Mansi T., Hong S.J., Bernasconi N. Accurate cortical tissue classification on MRI by modeling cortical folding patterns. Hum. Brain Mapp. 2015;36(9):3563–3574.
    1. Koenig S.H., Brown R.D., 3rd Spiller M, Lundbom N. Relaxometry of brain: why white matter appears bright in MRI. Magn. Reson. Med. 1990;14(3):482–495.
    1. Kuzniecky R., de la Sayette V., Ethier R., Melanson D., Andermann F., Berkovic S. Magnetic resonance imaging in temporal lobe epilepsy: pathological correlations. Ann. Neurol. 1987;22(3):341–347.
    1. Labate A., Cerasa A., Aguglia U., Mumoli L., Quattrone A., Gambardella A. Neocortical thinning in "benign" mesial temporal lobe epilepsy. Epilepsia. 2011;52(4):712–717.
    1. Leemans A.J., Sijbers B., Jones J., editor ExploreDTI D.K. A graphical toolbox for processing, analyzing, and visualizing diffusion MR data. ISMRM. 2009:18–24. April 2009; Hawaii, USA.
    1. Lin J.J., Salamon N., Lee A.D., Dutton R.A., Geaga J.A., Hayashi K.M. Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. Cereb. Cortex. 2007;17(9):2007–2018.
    1. Liu M., Bernhardt B.C., Hong S.J., Caldairou B., Bernasconi A., Bernasconi N. The superficial white matter in temporal lobe epilepsy: a key link between structural and functional network disruptions. Brain. 2016;139(Pt 9):2431–2440.
    1. Liu M., Bernhardt B.C., Bernasconi A., Bernasconi N. Gray matter structural compromise is equally distributed in left and right temporal lobe epilepsy. Hum. Brain Mapp. 2016;37(2):515–524.
    1. Lutti A., Dick F., Sereno M.I., Weiskopf N. Using high-resolution quantitative mapping of R1 as an index of cortical myelination. Neuroimage. 2014;93:176–188. Pt 2.
    1. MacKay A., Whittall K., Adler J., Li D., Paty D., Graeb D. In vivo visualization of myelin water in brain by magnetic resonance. Magn. Reson. Med. 1994;31(6):673–677.
    1. Maier-Hein K.H., Neher P.F., Houde J.C., Cote M.A., Garyfallidis E., Zhong J. The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 2017;8(1):1349.
    1. Margerison J.H., Corsellis J.A. Epilepsy and the temporal lobes. a clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain. 1966;89(3):499–530.
    1. McDonald C.R., Hagler D.J., Jr., Ahmadi M.E., Tecoma E., Iragui V., Gharapetian L. Regional neocortical thinning in mesial temporal lobe epilepsy. Epilepsia. 2008;49(5):794–803.
    1. Meiners L.C., Witkamp T.D., de Kort G.A., van Huffelen A.C., van der Graaf Y., Jansen G.H. Relevance of temporal lobe white matter changes in hippocampal sclerosis. Mag. Reson. Img. Histol. Invest Radiol.. 1999;34(1):38–45.
    1. Mitchell L.A., Jackson G.D., Kalnins R.M., Saling M.M., Fitt G.J., Ashpole R.D. Anterior temporal abnormality in temporal lobe epilepsy: a quantitative mri and histopathologic study. Neurology. 1999;52(2):327–336.
    1. Nishio S., Morioka T., Hisada K., Fukui M. Temporal lobe epilepsy: a clinicopathological study with special reference to temporal neocortical changes. Neurosurg. Rev. 2000;23(2):84–89.
    1. Otte W.M., van Eijsden P., Sander J.W., Duncan J.S., Dijkhuizen R.M., Braun K.P. A meta-analysis of white matter changes in temporal lobe epilepsy as studied with diffusion tensor imaging. Epilepsia. 2012;53(4):659–667.
    1. Pail M., Brazdil M., Marecek R., Mikl M. An optimized voxel-based morphometric study of gray matter changes in patients with left-sided and right-sided mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE/HS) Epilepsia. 2010;51(4):511–518.
    1. Robbins S., Evans A.C., Collins D.L., Whitesides S. Tuning and comparing spatial normalization methods. Med. Image Anal. 2004;8(3):311–323.
    1. Santana M.T., Jackowski A.P., da Silva H.H., Caboclo L.O., Centeno R.S., Bressan R.A. Auras and clinical features in temporal lobe epilepsy: a new approach on the basis of voxel-based morphometry. Epilepsy Res. 2010;89(2–3):327–338.
    1. Sled J.G., Zijdenbos A.P., Evans A.C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging. 1998;17(1):87–97.
    1. Stuber C., Morawski M., Schafer A., Labadie C., Wahnert M., Leuze C. Myelin and iron concentration in the human brain: a quantitative study of mri contrast. Neuroimage. 2014;93:95–106. Pt 1.
    1. Tax C.M., Otte W.M., Viergever M.A., Dijkhuizen R.M., Leemans A. REKINDLE: robust extraction of kurtosis INDices with linear estimation. Magn. Reson. Med. 2015;73(2):794–808.
    1. Thom M., Holton J.L., D'Arrigo C., Griffin B., Beckett A., Sisodiya S. Microdysgenesis with abnormal cortical myelinated fibres in temporal lobe epilepsy: a histopathological study with calbindin d-28-K immunohistochemistry. Neuropathol. Appl. Neurobiol. 2000;26(3):251–257.
    1. Thom M., Sisodiya S., Harkness W., Scaravilli F. Microdysgenesis in temporal lobe epilepsy. A quantitative and immunohistochemical study of white matter neurones. Brain. 2001;124(Pt 11):2299–2309.
    1. van Eijsden P., Otte W.M., van der Hel W.S., van Nieuwenhuizen O., Dijkhuizen R.M., de Graaf R.A. In vivo diffusion tensor imaging and ex vivo histologic characterization of white matter pathology in a post-status epilepticus model of temporal lobe epilepsy. Epilepsia. 2011;52(4):841–845.
    1. Vaughan D.N., Rayner G., Tailby C., Jackson G.D. MRI-negative temporal lobe epilepsy: a network disorder of neocortical connectivity. Neurology. 2016;87(18):1934–1942.
    1. Vos S.B., Tax C.M., Luijten P.R., Ourselin S., Leemans A., Froeling M. The importance of correcting for signal drift in diffusion MRI. Magn. Reson. Med. 2017;77(1):285–299.
    1. Waehnert M.D., Dinse J., Schafer A., Geyer S., Bazin P.L., Turner R. A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI. Neuroimage. 2016;125:94–107.
    1. Whelan C.D., Altmann A., Botia J.A., Jahanshad N., Hibar D.P., Absil J. Structural brain abnormalities in the common epilepsies assessed in a worldwide enigma study. Brain. 2018;141(2):391–408.
    1. Wiebe S., Blume W.T., Girvin J.P., Eliasziw M. Effectiveness, efficiency of surgery for temporal lobe epilepsy study G. a randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl. J. Med. 2001;345(5):311–318.
    1. Winston G.P., Cardoso M.J., Williams E.J., Burdett J.L., Bartlett P.A., Espak M. Automated hippocampal segmentation in patients with epilepsy: available free online. Epilepsia. 2013;54(12):2166–2173.
    1. Winston G.P., Micallef C., Symms M.R., Alexander D.C., Duncan J.S., Zhang H. Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy. Res. 2014;108(2):336–339.
    1. Winston G.P., Vos S.B., Burdett J.L., Cardoso M.J., Ourselin S., Duncan J.S. Automated T2 relaxometry of the hippocampus for temporal lobe epilepsy. Epilepsia. 2017;58(9):1645–1652.
    1. Winston G.P. The physical and biological basis of quantitative parameters derived from diffusion MRI. Quant. Imaging Med. Surg. 2012;2(4):254–265.
    1. Wood TC. QUIT: QUantitative imaging tools. J. Or. Soft. 2018;3(26):656.
    1. Worsley K.J., Andermann M., Koulis T., MacDonald D., Evans A.C. Detecting changes in nonisotropic images. Hum. Brain Mapp. 1999;8(2–3):98–101.
    1. Worsley KJT J.E., Carbonell F., Chung M.K., Duerden E., Bernhardt B., Lyttelton O., Boucher M., Evans A.C.SurfStat. A MATLAB toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory. Neuroimage. 2009;47(Supplement 1):S102.
    1. Yogarajah M., Focke N.K., Bonelli S., Cercignani M., Acheson J., Parker G.J. Defining Meyer's loop-temporal lobe resections, visual field deficits and diffusion tensor tractography. Brain. 2009;132(Pt 6):1656–1668.
    1. Zhang H., Schneider T., Wheeler-Kingshott C.A., Alexander D.C. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61(4):1000–1016.

Source: PubMed

3
Sottoscrivi