The combined effect of parathyroid hormone (1-34) and whole-body vibration exercise on physical performance in OSteoporotic women (PaVOS study): a secondary analysis from a randomised controlled trial

Ditte Beck Jepsen, Tahir Masud, Anders Holsgaard-Larsen, Stinus Hansen, Niklas Rye Jørgensen, Jesper Ryg, Ditte Beck Jepsen, Tahir Masud, Anders Holsgaard-Larsen, Stinus Hansen, Niklas Rye Jørgensen, Jesper Ryg

Abstract

Background: The aim of this study was to investigate the effect on physical performance of combining whole-body vibration exercise (WBV) with parathyroid hormone 1-34 (teriparatide) compared to teriparatide alone.

Methods: A secondary analysis from a RCT where postmenopausal women with severe osteoporosis were randomised to WBV plus teriparatide (intervention) or teriparatide alone (control). WBV was applied three times/week (6x1min WBV:1 min rest, (peak acceleration 3.6 g)) for twelve months. Both groups received teriparatide 20 μg s.c./day. The primary endpoint (bone mineral density) is reported elsewhere. Physical performance measures (Short Physical Performance Battery (SPPB), Timed-Up-and-Go (TUG), leg extension power, and grip strength) were obtained at baseline, three-, six-, and twelve months, lean mass at baseline and twelve months. Data were analysed with mixed linear regression model or robust cluster regression in an intention to treat analysis.

Results: Thirty-five women aged (mean ± SD) 69 ± 7) years were recruited of which thirty-two (91%) completed the twelve months follow-up (WBV + teriparatide = 15, teriparatide = 17). SPPB score (mean ± SD) improved significantly at three months in the WBV + teriparatide group from 9.13 ± 2.03 to 10.35 ± 1.69 (p = 0.014) with a statistical trend towards a between-group change in favor of the WBV + teriparatide group (0.86 [95%CI(- 0.05,1.77), p = 0.065]). Both groups improved in leg extension power during the study period whereas no changes were seen in TUG, grip strength, or lean mass in either group. No statistical significant between-group differences were observed.

Conclusion: WBV may improve some short-term aspects of physical performance in severely osteoporotic postmenopausal women who are receiving teriparatide treatment.

Trial registration: ClinicalTrials.gov, ID:NCT02563353.

Keywords: Exercise; Osteoporosis; Physical performance; Short physical performance battery; Whole-body vibration; Women.

Conflict of interest statement

Competing interestsThe investigators have no competing interests in the study.

© The Author(s) 2020.

Figures

Fig. 1
Fig. 1
Consort flow diagram showing number of subjects screened for study participation and number of participants in each treatment group at baseline, three-, six-, and twelve months of follow-up, with designation of reasons for early discontinuation. The WBV + teriparatide group received whole-body vibration and teriparatide and the teriparatide group received teriparatide alone. WBV whole-body vibration, ITT intention to treat

References

    1. Svedbom A, Hernlund E, Ivergard M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: a compendium of country-specific reports. Arch Osteoporos. 2013;8:137. doi: 10.1007/s11657-013-0137-0.
    1. Oden A, McCloskey EV, Kanis JA, Harvey NC, Johansson H. Burden of high fracture probability worldwide: secular increases 2010-2040. Osteoporos Int. 2015;26(9):2243–2248. doi: 10.1007/s00198-015-3154-6.
    1. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726–1733. doi: 10.1007/s00198-006-0172-4.
    1. Kannegaard PN, van der Mark S, Eiken P, Abrahamsen B. Excess mortality in men compared with women following a hip fracture. National analysis of comedications, comorbidity and survival. Age Ageing. 2010;39(2):203–209. doi: 10.1093/ageing/afp221.
    1. Ensrud KE, Barrett-Connor EL, Schwartz A, Santora AC, Bauer DC, Suryawanshi S, et al. Randomized trial of effect of alendronate continuation versus discontinuation in women with low BMD: results from the fracture intervention trial long-term extension. J Bone Miner Res. 2004;19(8):1259–1269. doi: 10.1359/JBMR.040326.
    1. Bone HG, Wagman RB, Brandi ML, Brown JP, Chapurlat R, Cummings SR, et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017;5(7):513–523. doi: 10.1016/S2213-8587(17)30138-9.
    1. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster J-Y, et al. Effect of parathyroid hormone (1-34) on fractures and Bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–1441. doi: 10.1056/NEJM200105103441904.
    1. Wolfson L, Judge J, Whipple R, King M. Strength is a major factor in balance, gait, and the occurrence of falls. J Gerontol A Biol Sci Med Sci. 1995;50 Spec No:64–67.
    1. Sherrington C, Michaleff ZA, Fairhall N, Paul SS, Tiedemann A, Whitney J, et al. Exercise to prevent falls in older adults: an updated systematic review and meta-analysis. Br J Sports Med. 2017;51(24):1750–1758. doi: 10.1136/bjsports-2016-096547.
    1. Corrie H, Brooke-Wavell K, Mansfield NJ, Cowley A, Morris R, Masud T. Effects of vertical and side-alternating vibration training on fall risk factors and bone turnover in older people at risk of falls. Age Ageing. 2015;44(1):115–122. doi: 10.1093/ageing/afu136.
    1. Iwamoto J, Takeda T, Sato Y, Uzawa M. Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate. Aging Clin Exp Res. 2005;17(2):157–163. doi: 10.1007/BF03324589.
    1. Roelants M, Delecluse C, Verschueren SM. Whole-body-vibration training increases knee-extension strength and speed of movement in older women. J Am Geriatr Soc. 2004;52(6):901–908. doi: 10.1111/j.1532-5415.2004.52256.x.
    1. Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res. 2004;19(3):352–359. doi: 10.1359/JBMR.0301245.
    1. Gusi N, Raimundo A, Leal A. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC Musculoskelet Disord. 2006;7:92. doi: 10.1186/1471-2474-7-92.
    1. Uusi-Rasi K, Kannus P, Cheng S, Sievänen H, Pasanen M, Heinonen A, et al. Effect of alendronate and exercise on bone and physical performance of postmenopausal women: a randomized controlled trial. Bone. 2003;33(1):132–143. doi: 10.1016/S8756-3282(03)00082-6.
    1. Jepsen DB, Ryg J, Hansen S, Jorgensen NR, Gram J, Masud T. The combined effect of parathyroid hormone (1-34) and whole-body vibration exercise in the treatment of postmenopausal OSteoporosis (PaVOS study): a randomized controlled trial. Osteoporos Int. 2019.
    1. Jepsen DB, Ryg J, Jorgensen NR, Hansen S, Masud T. The combined effect of parathyroid hormone (1-34) and whole-body vibration exercise in the treatment of OSteoporosis (PaVOS)- study protocol for a randomized controlled trial. Trials. 2018;19(1):186. doi: 10.1186/s13063-018-2551-5.
    1. Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel group randomized trials. BMC Med Res Methodol. 2001;1:2. doi: 10.1186/1471-2288-1-2.
    1. International Organization for Standardization. (ISO 13090-1:1998). Mechanical vibration and shock -- Guidance on safety aspects of tests and experiments with people -- Part 1: Exposure to whole-body mechanical vibration and repeated shock. .
    1. Ekelund U, Sepp H, Brage S, Becker W, Jakes R, Hennings M, et al. Criterion-related validity of the last 7-day, short form of the international physical activity questionnaire in Swedish adults. Public Health Nutr. 2006;9(2):258–265. doi: 10.1079/PHN2005840.
    1. Freire AN, Guerra RO, Alvarado B, Guralnik JM, Zunzunegui MV. Validity and reliability of the short physical performance battery in two diverse older adult populations in Quebec and Brazil. J Aging Health. 2012;24(5):863–878. doi: 10.1177/0898264312438551.
    1. Bassey EJ, Short AH. A new method for measuring power output in a single leg extension: feasibility, reliability and validity. Eur J Appl Physiol Occup Physiol. 1990;60(5):385–390. doi: 10.1007/BF00713504.
    1. Frederiksen H, Hjelmborg J, Mortensen J, McGue M, Vaupel JW, Christensen K. Age trajectories of grip strength: cross-sectional and longitudinal data among 8,342 Danes aged 46 to 102. Ann Epidemiol. 2006;16(7):554–562. doi: 10.1016/j.annepidem.2005.10.006.
    1. Rittweger J, Schiessl H, Felsenberg D, Runge M. Reproducibility of the jumping mechanography as a test of mechanical power output in physically competent adult and elderly subjects. J Am Geriatr Soc. 2004;52(1):128–131. doi: 10.1111/j.1532-5415.2004.52022.x.
    1. Kwon S, Perera S, Pahor M, Katula JA, King AC, Groessl EJ, et al. What is a meaningful change in physical performance? Findings from a clinical trial in older adults (the LIFE-P study) J Nutr Health Aging. 2009;13(6):538–544. doi: 10.1007/s12603-009-0104-z.
    1. Liphardt AM, Schipilow J, Hanley DA, Boyd SK. Bone quality in osteopenic postmenopausal women is not improved after 12 months of whole-body vibration training. Osteoporos Int. 2015;26(3):911–920. doi: 10.1007/s00198-014-2995-8.
    1. Giangregorio LM, Papaioannou A, Macintyre NJ, Ashe MC, Heinonen A, Shipp K, et al. Too fit to fracture: exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporos Int. 2014;25(3):821–835. doi: 10.1007/s00198-013-2523-2.
    1. Buatois S, Miljkovic D, Manckoundia P, Gueguen R, Miget P, Vancon G, et al. Five times sit to stand test is a predictor of recurrent falls in healthy community-living subjects aged 65 and older. J Am Geriatr Soc. 2008;56(8):1575–1577. doi: 10.1111/j.1532-5415.2008.01777.x.
    1. Buatois S, Perret-Guillaume C, Gueguen R, Miget P, Vancon G, Perrin P, et al. A simple clinical scale to stratify risk of recurrent falls in community-dwelling adults aged 65 years and older. Phys Ther. 2010;90(4):550–560. doi: 10.2522/ptj.20090158.
    1. Jepsen DB, Thomsen K, Hansen S, Jorgensen NR, Masud T, Ryg J. Effect of whole-body vibration exercise in preventing falls and fractures: a systematic review and meta-analysis. BMJ Open. 2017;7(12):e018342. doi: 10.1136/bmjopen-2017-018342.
    1. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, Lamb SE. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;(9):Cd007146. 10.1002/14651858.CD007146.pub3.
    1. Rodrigues IB, Armstrong JJ, Adachi JD, MacDermid JC. Facilitators and barriers to exercise adherence in patients with osteopenia and osteoporosis: a systematic review. Osteoporos Int. 2017;28(3):735–745. doi: 10.1007/s00198-016-3793-2.
    1. Jeffrey BA, Hannan MT, Quinn EK, Zimmerman S, Barton BA, Rubin CT, et al. Self-reported adherence with the use of a device in a clinical trial as validated by electronic monitors: the VIBES study. BMC Med Res Methodol. 2012;12:171. doi: 10.1186/1471-2288-12-171.
    1. Thorsteinsson AL, Vestergaard P, Eiken P. Compliance and persistence with treatment with parathyroid hormone for osteoporosis. Danish national register-based cohort study. Arch Osteoporos. 2015;10:35. doi: 10.1007/s11657-015-0237-0.

Source: PubMed

3
Sottoscrivi