Population Pharmacokinetics of Delamanid and its Main Metabolite DM-6705 in Drug-Resistant Tuberculosis Patients Receiving Delamanid Alone or Coadministered with Bedaquiline

Lénaïg Tanneau, Mats O Karlsson, Andreas H Diacon, Justin Shenje, Jorge De Los Rios, Lubbe Wiesner, Caryn M Upton, Kelly E Dooley, Gary Maartens, Elin M Svensson, Lénaïg Tanneau, Mats O Karlsson, Andreas H Diacon, Justin Shenje, Jorge De Los Rios, Lubbe Wiesner, Caryn M Upton, Kelly E Dooley, Gary Maartens, Elin M Svensson

Abstract

Background and objective: Delamanid is a nitroimidazole, a novel class of drug for treating tuberculosis, and is primarily metabolized by albumin into the metabolite DM-6705. The aims of this analysis were to develop a population pharmacokinetic (PK) model to characterize the concentration-time course of delamanid and DM-6705 in adults with drug-resistant tuberculosis and to explore a potential drug-drug interaction with bedaquiline when coadministered.

Methods: Delamanid and DM-6705 concentrations after oral administration, from 52 participants (of whom 26 took bedaquiline concurrently and 20 were HIV-1 positive) enrolled in the DELIBERATE trial were analyzed using nonlinear mixed-effects modeling.

Results: Delamanid PK were described by a one-compartment disposition model with transit compartment absorption (mean absorption time of 1.45 h [95% confidence interval 0.501-2.20]) and linear elimination, while the PK of DM-6705 metabolite were described by a one-compartment disposition model with delamanid clearance as input and linear elimination. Predicted terminal half-life values for delamanid and DM-6705 were 15.1 h and 7.8 days, respectively. The impact of plasma albumin concentrations on delamanid metabolism was not significant. Bedaquiline coadministration did not affect delamanid PK. Other than allometric scaling with body weight, no patients' demographics were significant (including HIV).

Conclusions: This is the first joint PK model of delamanid and its DM-6705 metabolite. As such, it can be utilized in future exposure-response or exposure-safety analyses. Importantly, albumin concentrations, bedaquiline coadministration, and HIV co-infection (dolutegravir coadministration) did not have an effect on delamanid and DM-6705 PK.

Trial registration: ClinicalTrials.gov NCT02583048.

Conflict of interest statement

LT, MOK, AHD, JS, JDLR, LW, CMU, KED, GM, and EMS have no conflicts of interest to declare.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Observed delamanid and DM-6705 concentrations over the study period
Fig. 2
Fig. 2
Visual predictive checks of the final model for both delamanid and DM-6705 concentrations, for the sparse sampling occasions only (a) and stratified by the three rich sampling occasions (b). The solid and dashed lines represent the median, and 2.5th and 97.5th percentiles of the observed data (black circles), respectively, and the shaded areas represent the simulation-based 95% confidence intervals for the corresponding percentiles. Dashed vertical lines represent the time of dosing

References

    1. World Health Organization. Global tuberculosis report 2020. 2020. .
    1. Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE, et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med. 2012;366:2151–2160. doi: 10.1056/NEJMoa1112433.
    1. Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 2006;3:e466. doi: 10.1371/journal.pmed.0030466.
    1. Hoagland DT, Liu J, Lee RB, Lee RE. New agents for the treatment of drug-resistant mycobacterium tuberculosis. Adv Drug Deliv Rev. 2016;102:55–72. doi: 10.1016/j.addr.2016.04.026.
    1. Mohr E, Ferlazzo G, Hewison C, De Azevedo V, Isaakidis P. Bedaquiline and delamanid in combination for treatment of drug-resistant tuberculosis. Lancet Infect Dis. 2019;19:470. doi: 10.1016/S1473-3099(19)30168-9.
    1. Kim CT, Kim T-O, Shin H-J, Ko YC, Hun Choe Y, Kim H-R, et al. Bedaquiline and delamanid for the treatment of multidrug-resistant tuberculosis: a multicentre cohort study in Korea. Eur Respir J. 2018;51:1702467. doi: 10.1183/13993003.02467-2017.
    1. Migliori GB, Pontali E, Sotgiu G, Centis R, D’Ambrosio L, Tiberi S, et al. Combined use of delamanid and bedaquiline to treat multidrug-resistant and extensively drug-resistant tuberculosis: a systematic review. Int J Mol Sci. 2017;18:341. doi: 10.3390/ijms18020341.
    1. Tanneau L, Svensson EM, Rossenu S, Karlsson MO. Exposure–safety analysis of QTc interval and transaminase levels following bedaquiline administration in patients with drug-resistant tuberculosis. CPT Pharmacometrics Syst Pharmacol. 2021;10(12):1538–1549. doi: 10.1002/psp4.12722.
    1. Liu Y, Matsumoto M, Ishida H, Ohguro K, Yoshitake M, Gupta R, et al. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB) Tuberculosis. 2018;111:20–30. doi: 10.1016/j.tube.2018.04.008.
    1. Pontali E, Sotgiu G, Tiberi S, D’Ambrosio L, Centis R, Migliori GB. Cardiac safety of bedaquiline: a systematic and critical analysis of the evidence. Eur Respir J. 2017;50:1701462. doi: 10.1183/13993003.01462-2017.
    1. Sasahara K, Shimokawa Y, Hirao Y, Koyama N, Kitano K, Shibata M, et al. Pharmacokinetics and metabolism of delamanid, a novel anti-tuberculosis drug, in animals and humans: importance of albumin metabolism in vivo. Drug Metab Dispos. 2015;43:1267–1276. doi: 10.1124/dmd.115.064527.
    1. Shimokawa Y, Sasahara K, Koyama N, Kitano K, Shibata M, Yoda N, et al. Metabolic mechanism of delamanid, a new anti-tuberculosis drug, in human plasma. Drug Metab Dispos. 2015;43:1277–1283. doi: 10.1124/dmd.115.064550.
    1. Wang X, Mallikaarjun S, Gibiansky E. Population pharmacokinetic analysis of delamanid in patients with pulmonary multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2020;65:e01202–e1220.
    1. Mallikaarjun S, Wells C, Petersen C, Paccaly A, Shoaf SE, Patil S, et al. Delamanid coadministered with antiretroviral drugs or antituberculosis drugs shows no clinically relevant drug-drug interactions in healthy subjects. Antimicrob Agents Chemother. 2016;60:5976–5985. doi: 10.1128/AAC.00509-16.
    1. EMEA. Public assessment report—deltyba. 2013. .
    1. Dooley KE, Rosenkranz SL, Conradie F, Moran L, Hafner R, von Groote-Bidlingmaier F, et al. QT effects of bedaquiline, delamanid, or both in patients with rifampicin-resistant tuberculosis: a phase 2, open-label, randomised, controlled trial. Lancet Infect Dis. 2021;21(7):975–983. doi: 10.1016/S1473-3099(20)30770-2.
    1. Svensson E, Dosne A, Karlsson M. Population pharmacokinetics of bedaquiline and metabolite M2 in patients with drug-resistant tuberculosis: the effect of time-varying weight and albumin. CPT Pharmacometrics Syst Pharmacol. 2016;5:682–691. doi: 10.1002/psp4.12147.
    1. Jonsson EN, Karlsson MO. Automated covariate model building within NONMEM. Pharm Res. 1998;15:1463–1468. doi: 10.1023/A:1011970125687.
    1. Beal SL, Sheiner LB, Boeckmann AJ, Bauer RJ. NONMEM 7.4 Users Guides (1989-2017). Gaithersburg, MD: ICON plc. 2017. .
    1. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. 2020. .
    1. Lindbom L, Pihlgren P, Jonsson N. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79:241–257. doi: 10.1016/j.cmpb.2005.04.005.
    1. Karlsson MO, Hooker A, Nordgren R, Harling K, Freiberga S. Perl-speaks-NONMEM (PsN). 2016. .
    1. Gabrielsson J, Weiner D. Pharmacokinetic and pharmacodynamic data analysis: concepts and applications. Fourth Edition. Taylor & Francis; 2007.
    1. Benet LZ, Zia-Amirhosseini P. Basic principles of pharmacokinetics. Toxicol Pathol. 1995;23:115–123. doi: 10.1177/019262339502300203.

Source: PubMed

3
Sottoscrivi