Immune-mediated changes in actinic keratosis following topical treatment with imiquimod 5% cream

Abel Torres, Leslie Storey, Makala Anders, Richard L Miller, Barbara J Bulbulian, Jizhong Jin, Shalini Raghavan, James Lee, Herbert B Slade, Woubalem Birmachu, Abel Torres, Leslie Storey, Makala Anders, Richard L Miller, Barbara J Bulbulian, Jizhong Jin, Shalini Raghavan, James Lee, Herbert B Slade, Woubalem Birmachu

Abstract

Background: The objective of this study was to identify the molecular processes responsible for the anti-lesional activity of imiquimod in subjects with actinic keratosis using global gene expression profiling.

Methods: A double-blind, placebo-controlled, randomized study was conducted to evaluate gene expression changes in actinic keratosis treated with imiquimod 5% cream. Male subjects (N = 17) with > or = 5 actinic keratosis on the scalp applied placebo cream or imiquimod 3 times a week on nonconsecutive days for 4 weeks. To elucidate the molecular processes involved in actinic keratosis lesion regression by imiquimod, gene expression analysis using oligonucleotide arrays and real time reverse transcriptase polymerase chain reaction were performed on shave biopsies of lesions taken before and after treatment.

Results: Imiquimod modulated the expression of a large number of genes important in both the innate and adaptive immune response, including increased expression of interferon-inducible genes with known antiviral, anti-proliferative and immune modulatory activity, as well as various Toll-like receptors. In addition, imiquimod increased the expression of genes associated with activation of macrophages, dendritic cells, cytotoxic T cells, and natural killer cells, as well as activation of apoptotic pathways.

Conclusion: Data suggest that topical application of imiquimod stimulates cells in the skin to secrete cytokines and chemokines that lead to inflammatory cell influx into the lesions and subsequent apoptotic and immune cell-mediated destruction of lesions.

Figures

Figure 1
Figure 1
Variation in the temporal expression of IRF7 during treatment with imiquimod as determined by real time RT-PCR. 'AK,' designates pretreatment AK lesions. 'WK1 IMIQ', 'WK2 IMIQ' and 'WK4 IMIQ' designate treatment times week 1, 2 and 4. '4 WK Post designates' 4 weeks post end of treatment (WK4 treatment). Fold change was calculated with respect to sun-unexposed, non-lesional skin. S-01, S-02, S-06, S-15 and S-16 are samples from subjects 1, 2, 6, 15 and 16.
Figure 2
Figure 2
Comparison of gene expression data obtained by Affymetrix GeneChip analysis and real time RT-PCR. Linear regression analysis for IRF7 comparing fold change values for individual subjects as measured by Affymetrix analysis and real time RT-PCR analysis. The imiquimod response fold change, which is the maximum response from week 1, week 2 and week 4 treatment times was used. Fold change was calculated relative to sun-unexposed, nonlesional skin samples for 13 subjects treated with imiquimod. The R square value for the comparison was 0.83.
Figure 3
Figure 3
Basal TLR, IRF7, and MyD88 gene expression in skin biopsies as determined by real time RT-PCR. White bars represent pretreatment AK, black bars represent during imiquimod treatment (maximum response value from week 1, week 2 and week 4 treatment times), and hatched bars represent 4-weeks post treatment. Relative copy number was determined as outlined in Methods and Materials section. Asterisks indicate those genes that had p-values < 0.05 in the ANOVA, comparing expression in pretreatment AK samples to the maximum response expression in samples from subjects (n = 13) during imiquimod treatment. [See Additional file 2].
Figure 4
Figure 4
Increase in expression of the helicase family of virus-sensing genes upon treatment with imiquimod as determined by Affymetrix GeneChip analysis. (A)DDX58 (RIG-I) and (B)IFIH1 (MDA5). Experimental conditions are as described in the Methods and Materials section. Box plots were generated using MINITAB version 14. 'AK,' 'IMIQ,' and 'Post' designate pretreatment AK, imiquimod-treated skin during treatment (maximum response from week 1, week 2 and week 4), and imiquimod-treated skin 4 weeks post treatment, respectively. Fold change was calculated with respect to sun-unexposed skin. Boxes indicate the median 95% confidence intervals, asterisks designate outliers, and the lines connect median values. P values are given for 2-way ANOVA, comparing the fold change values for pretreatment AK samples and imiquimod-treated samples (n = 13).
Figure 5
Figure 5
Cluster analysis of genes regulated by imiquimod treatment. Two-way hierarchical clustering was performed as described in the Methods and Materials section. 'AK,' 'IMIQ,' and 'Placebo' designate the fold change with respect to sun-unexposed, nonlesional skin for pretreatment AK samples; for samples during imiquimod treatment (maximum response from week 1, week 2 and week 4), and samples for vehicle-treatment (maximum response from week 1, week 2 and week 4) respectively. Numbers designate subjects. Hierarchical clustering was performed using the Unweighted Pair-Group Method with Arithmetic mean (UPGMA) and the Euclidean similarity measure. Red, white, and green indicate up-regulated, unchanged, and down-regulated genes, respectively. The color bar insert shows the corresponding expression levels. The cluster consists of 530 imiquimod-responsive genes whose expression was statistically different when comparing the AK group of samples to the IMIQ group of samples. Expression changes for the 530 genes are documented in [Additional file 1].
Figure 6
Figure 6
Cluster of 46 immune response genes that are also known to be inducible upon treatment with type 1 interferons as reported in [18, 43, 45, 48, 51, 102] Cluster analysis was performed as described in Figure 5. [See Additional file 3].
Figure 7
Figure 7
Imiquimod treatment is associated with an increase in expression of pro-apoptotic genes as determined by Affymetrix GeneChip analysis. (A) TNFSF10 (B)MX1. Experimental conditions and analysis are as described for Figure 4.
Figure 8
Figure 8
Increase in expression of chemokines after treatment with imiquimod as determined by Affymetrix GeneChip analysis. (A)CXCL10 (IP10), (B)CXCL11 (ITAC). Experimental conditions and analysis are as described for Figure 4.
Figure 9
Figure 9
Increase in expression of genes indicating the infiltration of DCs upon treatment with imiquimod as determined by Affymetrix GeneChip analysis. (A)CD86 (B) ILT7. Experimental conditions and analysis are as described for Figure 4.
Figure 10
Figure 10
Increase in expression of genes associated with NK cells, and cytotoxic T cells after treatment with imiquimod as determined by Affymetrix gene expression. (A)GZMA (B) NKG7. Experimental conditions and analysis are as described for Figure 4.
Figure 11
Figure 11
Increase in expression of genes associated with lymphocyte function after treatment with imiquimod as determined by Affymetrix GeneChip analysis. (A) SELL (CD62L) (B) NT5E (DC73). Experimental conditions and analysis are as described for Figure 4.

References

    1. Callen JP, Bickers DR, Moy RL. Actinic keratosis. J Am Acad Dermatol. 1997;36:650–653. doi: 10.1016/S0190-9622(97)70265-2.
    1. Schwartz RA. The actinic keratosis: a perspective and update. Dermatol Surg. 1997;23:1009–1019. doi: 10.1016/S1076-0512(97)00353-1.
    1. Marks R, Rennie G, Selwood T. The relationship of basal cell carcinomas and squamous cell carcinomas to solar keratosis. Arch Dermatol. 1988;124:1039–1042. doi: 10.1001/archderm.124.7.1039.
    1. Nghiem DX, Kazimi N, Mitchell DL, Vink AA, Ananthaswamy HN, Kripke ML, Ullric Mechanisms underlying the suppression of established immune responses by ultraviolet radiation. J Invest Dermatol. 2002;119:600–608. doi: 10.1046/j.1523-1747.2002.01845.x.
    1. Yantsos VA, Conrad N, Zabawski E, Cockerell CJ. Incipient intraepidermal cutaneous squamous cell carcinoma: A proposal for reclassifying and grading solar (actinic) keratosis. Semin Cutan Med Surg. 1999;18:3–14. doi: 10.1016/S1085-5629(99)80003-0.
    1. Glogau RG. The risk of progression to invasive disease. J Am Acad Dermatol. 2000;42:23–24. doi: 10.1067/mjd.2000.103339.
    1. Silapunt S, Goldberg LH, Alam M. Topical and light-based treatments for actinic keratosis. Semin Cutan Med Surg. 2003;22:162–170. doi: 10.1016/S1085-5629(03)00040-3.
    1. Fu W, Cockerell CJ. The actinic (solar) keratosis: a 21st-century perspective. Arch Dermatol. 2003;139:66–70. doi: 10.1001/archderm.139.1.66.
    1. Takeda K, Akira S. Microbial recognition by Toll-like receptors. J Dermatol Sci. 2004;34:73–82. doi: 10.1016/j.jdermsci.2003.10.002.
    1. Pasare C, Medzhitov R. t Toll-like receptors linking innate and adaptive immunity. Microbes Infect. 2004;6:1382–1387. doi: 10.1016/j.micinf.2004.08.018.
    1. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G. Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol. 2002;168:4531–4537.
    1. Kollisch G, Kalali BN, Voelcker V, Wallich R, Behrendt H, Ring J, Bauer S, Jakob T, Mempel M, Ollert M. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology. 2005;114:531–541. doi: 10.1111/j.1365-2567.2005.02122.x.
    1. McInturff JE, Modlin RL, Kim J. The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol. 2005;125:1–8. doi: 10.1111/j.0022-202X.2004.23459.x.
    1. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3:196–200. doi: 10.1038/ni758.
    1. Gibson SJ, Lindh JM, Riter TR, Gleason RM, Rogers LM, Fuller AE, Oesterich JL, Gorden KB, Qiu X, McKane SW, Noelle RJ, Miller RL, Kedl RM, Fitzgerald-Bocarsly P, Tomai MA, Vasilakos JP. Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell Immunol. 2002;218:74–86. doi: 10.1016/S0008-8749(02)00517-8.
    1. Beutner KR, Tyring SK, Trofatter KF, Jr, Douglas JM, Jr, Spruance S, Owens ML, Fox TL, Hougham AJ, Schmitt KA. Imiquimod, a patient-applied immune-response modifier for treatment of external genital warts. Antimicrob Agents Chemother. 1998;42:789–794.
    1. Szeimies RM, Gerritsen MJ, Gupta G, Ortonne JP, Serresi S, Bichel J, Lee JH, Fox TL, Alomar A. Imiquimod 5% cream for the treatment of actinic keratosis: results from a phase III, randomized, double-blind, vehicle-controlled, clinical trial with histology. J Am Acad Dermatol. 2004;51:547–555. doi: 10.1016/j.jaad.2004.02.022.
    1. Geisse JK, Rich P, Pandya A, Gross K, Andres K, Ginkel A, Owens M. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: a double-blind, randomized, vehicle-controlled study. J Am Acad Dermatol. 2002;47:390–8. doi: 10.1067/mjd.2002.126215.
    1. Urosevic M, Maier T, Benninghoff B, Slade H, Burg G, Dummer R. Mechanisms underlying imiquimod-induced regression of basal cell carcinoma in vivo. Arch Dermatol. 2003;139:1325–1332. doi: 10.1001/archderm.139.10.1325.
    1. Barnetson RStC, Stachell A, Zhuang L, Slade HB, Halliday GM. Imiquimod induced regression of clinically diagnosed superficial basal cell carcinoma is associated with early infiltration by CD4 T cells and dendritic cells. Clin Exp Dermatol. 2004;29:639–643. doi: 10.1111/j.1365-2230.2004.01614.x.
    1. Miller RL, Gerster JF, Owens ML, Slade HB, Tomai MA. Imiquimod applied topically: A novel immune response modifier and a new class of drug. Int J Immunopharmacol. 1999;21:1–14. doi: 10.1016/S0192-0561(98)00068-X.
    1. Lysa B, Tartler U, Wolf R, Arenberger P, Benninghoff B, Ruzicka T, Hengge UR, Walz M. Gene expression in actinic keratosis: Pharmacological modulation by imiquimod. Br J Dermatol. 2004;151:1150–1159. doi: 10.1111/j.1365-2133.2004.06236.x.
    1. Arany I, Tyring SK, Stanley MA, Tomai MA, Miller RL, Smith MH, McDermott DJ, Slade HB. Enhancement of the innate and cellular immune response in patients with genital warts treated with topical imiquimod cream 5% Antiviral Res. 1999;43:55–63. doi: 10.1016/S0166-3542(99)00033-9.
    1. Bernstein DI, Miller RL, Harrison CJ. Adjuvant effects of imiquimod on a herpes simplex virus type 2 glycoprotein vaccine in guinea pigs. J Infect Dis. 1993;167:731–735.
    1. Bernstein DI, Harrison CJ, Tepe ER, Shahwan A, Miller R. Effect of imiquimod as an adjuvant for immunotherapy of genital HSV in guinea-pigs. Vaccine. 1995;13:72–76. doi: 10.1016/0264-410X(95)80014-5.
    1. Vasilakos JP, Smith RM, Gibson SJ, Lindh JM, Pederson LK, Reiter MJ, Smith MH, Tomai MA. Adjuvant activities of immune response modifier R-848: Comparison with CpG ODN. Cell Immunol. 2000;204:64–74. doi: 10.1006/cimm.2000.1689.
    1. Nair S, McLaughlin C, Weizer A, Su Z, Boczkowski D, Dannull J, Vieweg J, Gilboa E. Injection of immature dendritic cells into adjuvant-treated skin obviates the need for ex vivo maturation. J Immunol. 2003;171:6275–6282.
    1. Affymetrix Inc Gene chip expression analysis technical manual. 2003.
    1. Schindler H, Wiese A, Auer J, Burtscher H. cRNA target preparation for microarrays: Comparison of gene expression profiles generated with different amplification procedures. Anal Biochem. 2005;344:92–101. doi: 10.1016/j.ab.2005.06.006.
    1. Klur S, Toy K, Williams MP, Certa U. Evaluation of procedures for amplification of small-size samples for hybridization on microarrays. Genomics. 2004;83:508–517. doi: 10.1016/j.ygeno.2003.09.005.
    1. Abruzzo LV, Lee KY, Fuller A, Silverman A, Keating MJ, Medeiros LJ, Coombes KR. Validation of oligonucleotide microarray data using microfluidic low-density arrays: A new statistical method to normalize real-time RT-PCR data. Biotechniques. 2005;38:785–792.
    1. Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003;4:R28. doi: 10.1186/gb-2003-4-4-r28.
    1. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol. 2004;5:1061–8. doi: 10.1038/ni1118.
    1. Miettinen M, Sareneva T, Julkunen I, Matikainen S. IFNs activate toll-like receptor gene expression in viral infections. Genes Immun. 2001;2:349–355. doi: 10.1038/sj.gene.6363791.
    1. Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol. 2002;168:554–561. Erratum in: J Immunol 169(2):1136.
    1. Kokkinopoulos I, Jordan WJ, Ritter MA. Toll-like receptor mRNA expression patterns in human dendritic cells and monocytes. Mol Immunol. 2005;42:957–968. doi: 10.1016/j.molimm.2004.09.037.
    1. Siren J, Pirhonen J, Julkunen I, Matikainen S. IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29. J Immunol. 2005;174:1932–1937.
    1. Osterlund P, Veckman V, Siren J, Klucher KM, Hiscott J, Matikainen S, Julkunen I. Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J Virol. 2005;79:9608–9617. doi: 10.1128/JVI.79.15.9608-9617.2005.
    1. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5:730–737. doi: 10.1038/ni1087.
    1. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M, Jr, Akira S, Yonehara S, Kato A, Fujita T. Shared and unique functions of the DExD/H-Box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol. 2005;175:2851–2858.
    1. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol. 2005;6:981–988. doi: 10.1038/ni1243.
    1. Taylor MW, Grosse WM, Schaley JE, Sanda C, Wu X, Chien SC, Smith F, Wu TG, Stephens M, Ferris MW, McClintick JN, Jerome RE, Edenberg HJ. Global effect of PEG-IFN-alpha and ribavirin on gene expression in PBMC in vitro. J Interferon Cytokine Res. 2004;24:107–118. doi: 10.1089/107999004322813354.
    1. Nagorsen D, Deola S, Smith K, Wang E, Monsurro V, Zanovello P, Marincola FM, Panelli MC. Polarized monocyte response to cytokine stimulation. Genome Biol. 2005;6:R15. doi: 10.1186/gb-2005-6-2-r15.
    1. Kang DC, Gopalkrishnan RV, Wu Q, Jankowsky E, Pyle AM, Fisher PB. MDA-5 An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci USA. 2002;99:637–642. doi: 10.1073/pnas.022637199.
    1. Gorden KB, Gorski KS, Gibson SJ, Kedl RM, Kieper WC, Qiu X, Tomai MA, Alkan SS, Vasilakos JP. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol. 2005;174:1259–1268.
    1. Khabar KS, Al-Haj L, Al-Zoghaibi F, Marie M, Dhalla M, Polyak SJ, Williams BR. Expressed gene clusters associated with cellular sensitivity and resistance towards anti-viral and anti-proliferative actions of interferon. J Mol Biol. 2004;342:833–846. doi: 10.1016/j.jmb.2004.07.065.
    1. Der SD, Zhou A, Williams BR, Silverman RH. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA. 1998;95:15623–15628. doi: 10.1073/pnas.95.26.15623.
    1. Leaman DW, Chawla-Sarkar M, Jacobs B, Vyas K, Sun Y, Ozdemir A, Yi T, Williams BR, Borden EC. Novel growth and death related interferon-stimulated genes (ISGs) in melanoma: Greater potency of IFN-beta compared with IFN-alpha2. J Interferon Cytokine Res. 2003;23:745–756. doi: 10.1089/107999003772084860.
    1. Sarkar SN, Sen GC. Novel functions of proteins encoded by viral stress-inducible genes. Pharmacol Ther. 2004;103:245–259. doi: 10.1016/j.pharmthera.2004.07.007.
    1. Stroncek DF, Basil C, Nagorsen D, Deola S, Arico E, Smith K, Wang E, Marincola FM, Panelli MC. Delayed polarization of mononuclear phagocyte transcriptional program by type I interferon isoforms. J Transl Med. 2005;3:24. doi: 10.1186/1479-5876-3-24.
    1. Gordien E, Rosmorduc O, Peltekian C, Garreau F, Brechot C, Kremsdorf D. Inhibition of hepatitis B virus replication by the interferon-inducible MxA protein. J Virol. 2001;75:2684–2691. doi: 10.1128/JVI.75.6.2684-2691.2001.
    1. Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418:646–650. doi: 10.1038/nature00939.
    1. Chin KC, Cresswell P. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proc Natl Acad Sci U S A. 2001;98:15125–15130. doi: 10.1073/pnas.011593298.
    1. Castelli JC, Hassel BA, Maran A, Paranjape J, Hewitt JA, Li XL, Hsu YT, Silverman RH, Youle RJ. The role of 2'-5' oligoadenylate-activated ribonuclease L in apoptosis. Cell Death Differ. 1998:313–320. doi: 10.1038/sj.cdd.4400352.
    1. de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BR. Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol. 2001;69:912–920.
    1. Papageorgiou A, Lashinger L, Millikan R, Grossman HB, Benedict W, Dinney CP, McConkey DJ. Role of tumor necrosis factor-related apoptosis-inducing ligand in interferon-induced apoptosis in human bladder cancer cells. Cancer Res. 2004;64:8973–8979. doi: 10.1158/0008-5472.CAN-04-1909.
    1. Keyser J, Schultz J, Ladell K, Elzaouk L, Heinzerling L, Pavlovic J, Moelling K. IP-10-encoding plasmid DNA therapy exhibits antitumor and antimetastatic efficiency. Exp Dermatol. 2004;13:380. doi: 10.1111/j.0906-6705.2004.00191.x.
    1. Li S, Wilkinson M, Xia X, David M, Xu L, Purkel-Sutton A, Bhardwaj A. Induction of IFN-regulated factors and antitumoral surveillance by transfected placebo plasmid DNA. Mol Ther. 2005;11:112–119. doi: 10.1016/j.ymthe.2004.09.008.
    1. Helbig KJ, Lau DT, Semendric L, Harley HA, Beard MR. Analysis of ISG expression in chronic hepatitis C identifies viperin as a potential antiviral effector. Hepatology. 2005;42:702–710. doi: 10.1002/hep.20844.
    1. Takaku T, Ohyashiki JH, Zhang Y, Ohyashiki K. Estimating immunoregulatory gene networks in human herpesvirus type 6-infected T cells. Biochem Biophys Res Commun. 2005;336:469–477. doi: 10.1016/j.bbrc.2005.08.104.
    1. Kim EJ, Park JI, Nelkin BD. IFI16 is an essential mediator of growth inhibition, but not differentiation, induced by the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. J Biol Chem. 2005;280:4913–4920. doi: 10.1074/jbc.M410542200.
    1. Ludlow LE, Johnstone RW, Clarke CJ. The HIN-200 family: More than interferon-inducible genes? Exp Cell Res. 2005;308:1–17. doi: 10.1016/j.yexcr.2005.03.032.
    1. Chen GG, Lai PB, Ho RL, Chan PK, Xu H, Wong J, Lau WY. Reduction of double-stranded RNA-activated protein kinase in hepatocellular carcinoma associated with hepatitis B virus. J Med Virol. 2004;73:187–194. doi: 10.1002/jmv.20074.
    1. Keefe D, Shi L, Feske S, Massol R, Navarro F, Kirchhausen T, Lieberman J. Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity. 2005;23:249–262. doi: 10.1016/j.immuni.2005.08.001.
    1. Wenzel J, Uerlich M, Haller O, Bieber T, Tueting T. Enhanced type I interferon signaling and recruitment of chemokine receptor CXCR3-expressing lymphocytes into the skin following treatment with the TLR7-agonist imiquimod. J Cutan Pathol. 2005;32:257–262. doi: 10.1111/j.0303-6987.2005.00297.x.
    1. Urosevic M, Oberholzer PA, Maier T, Hafner J, Laine E, Slade H, Benninghoff B, Burg G, Dummer R. Imiquimod treatment induces expression of opioid growth factor receptor: A novel tumor antigen induced by interferon-alpha? Clin Cancer Res. 2004;10:4959–4970. doi: 10.1158/1078-0432.CCR-04-0193.
    1. Korman N, Moy R, Ling M, Matheson R, Smith S, McKane S, Lee JH. Dosing with 5% imiquimod cream 3 times per week for the treatment of actinic keratosis: Results of two phase 3, randomized, double-blind, parallel-group, placebo-controlled trials. Arch Dermatol. 2005;141:467–473. doi: 10.1001/archderm.141.4.467.
    1. Urosevic M, Dummer R, Conrad C, Beyeler M, Laine E, Burg G, Gilliet M. Disease-independent skin recruitment and activation of plasmacytoid predendritic cells following imiquimod treatment. J Natl Cancer Inst. 2005;97:1143–1153.
    1. Matsumoto M, Tanaka T, Kaisho T, Sanjo H, Copeland NG, Gilbert DJ, Jenkins NA, Akira S. A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J Immunol. 1999;163:5039–5048.
    1. Walker MG. Z39Ig is co-expressed with activated macrophage genes. Biochim Biophys Acta. 2002;1574:387–390.
    1. Ooi T, Barnetson RS, Zhuang L, McKane S, Lee JH, Slade HB, Halliday GM. Imiquimod-induced regression of actinic keratosis is associated with infiltration by T lymphocytes and dendritic cells: a randomized controlled trial. Br J Dermatol. 2006;154:72–78. doi: 10.1111/j.1365-2133.2005.06932.x.
    1. Michalopoulos P, Yawalkar N, Bronnimann M, Kappeler A, Braathen LR. Characterization of the cellular infiltrate during successful topical treatment of lentigo maligna with imiquimod. Br J Dermatol. 2004;151:903–906. doi: 10.1111/j.1365-2133.2004.06176.x.
    1. Wolf IH, Cerroni L, Kodama K, Kerl H. Treatment of lentigo maligna (melanoma in situ) with the immune response modifier imiquimod. Arch Dermatol. 2005;141:510–514. doi: 10.1001/archderm.141.4.510.
    1. Bates EE, Fournier N, Garcia E, Valladeau J, Durand I, Pin JJ, Zurawski SM, Patel S, Abrams JS, Lebecque S, Garrone P, Saeland S. APCs express DCIR, a novel C-type lectin surface receptor containing an immunoreceptor tyrosine-based inhibitory motif. J Immunol. 1999;163:1973–1983.
    1. Ju XS, Hacker C, Scherer B, Redecke V, Berger T, Schuler G, Wagner H, Lipford GB, Zenke M. Immunoglobulin-like transcripts ILT2, ILT3 and ILT7 are expressed by human dendritic cells and down-regulated following activation. Gene. 2004;331:159–164. doi: 10.1016/j.gene.2004.02.018.
    1. Rissoan MC, Duhen T, Bridon JM, Bendriss-Vermare N, Peronne C, de Saint Vis B, Briere F, Bates EE. Subtractive hybridization reveals the expression of immunoglobulinlike transcript 7, Eph-B1, granzyme B, and 3 novel transcripts in human plasmacytoid dendritic cells. Blood. 2002;100:3295–3303. doi: 10.1182/blood-2002-02-0638.
    1. Palamara F, Meindl S, Holcmann M, Luhrs P, Stingl G, Sibilia M. Identification and characterization of pDC-like cells in normal mouse skin and melanomas treated with imiquimod. J Immunol. 2004;173:3051–3061.
    1. Peiser M, Grutzkau A, Wanner R, Kolde G. CD1a and CD1c cell sorting yields a homogeneous population of immature human Langerhans cells. J Immunol Methods. 2003;279:41–53. doi: 10.1016/S0022-1759(03)00257-6.
    1. Darmochwal-Kolarz D, Rolinski J, Buczkowski J, Tabarkiewicz J, Leszczynska-Gorzelak B, Zych I, Oleszczuk J. CD1c(+) immature myeloid dendritic cells are predominant in cord blood of healthy neonates. Immunol Lett. 2004;91:71–74. doi: 10.1016/j.imlet.2003.11.006.
    1. Suzuki H, Wang B, Shivji GM, Toto P, Amerio P, Tomai MA, Miller RL, Sauder DN. Imiquimod, a topical immune response modifer, induces migration of Langerhans cells. J Investig Dermatol. 2000;114:135–141. doi: 10.1046/j.1523-1747.2000.00833.x.
    1. Verneris MR, Karami M, Baker J, Jayaswal A, Negrin RS. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. Blood. 2004;103:3065–3072. doi: 10.1182/blood-2003-06-2125.
    1. Pisegna S, Zingoni A, Pirozzi G, Cinque B, Cifone MG, Morrone S, Piccoli M, Frati L, Palmieri G, Santoni A. Src-dependent Syk activation controls CD69-mediated signaling and function on human NK cells. J Immunol. 2002;169:68–74.
    1. Barber DF, Faure M, Long EO. LFA-1 contributes an early signal for NK cell cytotoxicity. J Immunol. 2004;173:3653–3659.
    1. Anikeeva N, Somersalo K, Sims TN, Thomas VK, Dustin ML, Sykulev Y. Distinct role of lymphocyte function-associated antigen-1 in mediating effective cytolytic activity by cytotoxic T lymphocytes. Proc Natl Acad Sci USA. 2005;102:6437–6442. doi: 10.1073/pnas.0502467102.
    1. Cella M, Fujikawa K, Tassi I, Kim S, Latinis K, Nishi S, Yokoyama W, Colonna M, Swat W. Differential requirements for Vav proteins in DAP10- and ITAM-mediated NK cell cytotoxicity. J Exp Med. 2004;200:817–823. doi: 10.1084/jem.20031847.
    1. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol. 2001;2:255–260. doi: 10.1038/85321.
    1. Jinushi M, Takehara T, Kanto T, Tatsumi T, Groh V, Spies T, Miyagi T, Suzuki T, Sasaki Y, Hayashi NT. Critical role of MHC class I-related chain A and B expression on IFNAα-stimulated dendritic cells in NK cell activation: Impairment in chronic hepatitis C virus infection. J Immunol. 2003;170:1249–56.
    1. Waterhouse NJ, Clarke CJ, Sedelies KA, Teng MW, Trapani JA. Cytotoxic lymphocytes; Instigators of dramatic target cell death. Biochem Pharmacol. 2004;68:1033–1040. doi: 10.1016/j.bcp.2004.05.043.
    1. Wowk ME, Trapani JA. Cytotoxic activity of the lymphocyte toxin granzyme B. Microbes Infect. 2004;6:752–758. doi: 10.1016/j.micinf.2004.03.008.
    1. Medley QG, Kedersha N, O'Brien S, Tian Q, Schlossman SF, Streuli M, Anderson P. Characterization of GMP-17, a granule membrane protein that moves to the plasma membrane of natural killer cells following target cell recognition. Proc Natl Acad Sci U S A. 1996;93:685–689. doi: 10.1073/pnas.93.2.685.
    1. Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, Takeda K, van Dommelen SL, Degli-Esposti MA, Hayakawa Y. Activation of NK cell cytotoxicity. Mol Immunol. 2005;42:501–510. doi: 10.1016/j.molimm.2004.07.034.
    1. Ashton-Rickardt PG. The granule pathway of programmed cell death. Crit Rev Immunol. 2005;25:161–182. doi: 10.1615/CritRevImmunol.v25.i3.10.
    1. Denny MF, Patai B, Straus DB. Differential T-cell antigen receptor signaling mediated by the Src family kinases Lck and Fyn. Mol Cell Biol. 2000;20:1426–1435. doi: 10.1128/MCB.20.4.1426-1435.2000.
    1. Kuhne MR, Lin J, Yablonski D, Mollenauer MN, Ehrlich LI, Huppa J, Davis MM, Weiss A. Linker for activation of T cells, zeta-associated protein-70, and Src homology 2 domain-containing leukocyte protein-76 are required for TCR-induced microtubule-organizing center polarization. J Immunol. 2003;171:860–866.
    1. Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral infection. J Virol. 2004;78:5535–5545. doi: 10.1128/JVI.78.11.5535-5545.2004.
    1. Fuller MJ, Hildeman DA, Sabbaj S, Gaddis DE, Tebo AE, Shang L, Goepfert PA, Zajac AJ. Cutting edge: Emergence of CD127high functionally competent memory T cells is compromised by high viral loads and inadequate T cell help. J Immunol. 2005;174:5926–5930.
    1. Rodriguez MW, Paquet AC, Yang YH, Erle DJ. Differential gene expression by integrin beta 7+ and beta 7-memory T helper cells. BMC Immunol. 2004;5:13. doi: 10.1186/1471-2172-5-13.
    1. Smith KJ, Hamza S, Skelton H. Topical imidazoquinoline therapy of cutaneous squamous cell carcinoma polarizes lymphoid and monocyte/macrophage populations to a Th1 and M1 cytokine pattern. Clin Exp Dermatol. 2004;29:505–512. doi: 10.1111/j.1365-2230.2004.01593.x.
    1. Bernstein DI, Harrison CJ, Tomai MA, Miller RL. Daily or weekly therapy with resiquimod (R-848) reduces genital recurrences in herpes simplex virus-infected guinea pigs during and after treatment. J Infect Dis. 2001;183:844–849. doi: 10.1086/319262.
    1. Stockfleth E, Christophers E, Benninghoff B, Sterry W. Low incidence of new actinic keratosis after topical 5% imiquimod cream treatment: A long-term follow-up study. Arch Dermatol. 2004;140:1542. doi: 10.1001/archderm.140.12.1542-a.
    1. Mohty M, Vialle-Castellano A, Nunes JA, Isnardon D, Olive D, Gaugler B. IFN-alpha skews monocyte differentiation into Toll-like receptor 7-expressing dendritic cells with potent functional activities. J Immunol. 2003;171:3385–3393.

Source: PubMed

3
Sottoscrivi