Modern retinal laser therapy

Igor Kozak, Jeffrey K Luttrull, Igor Kozak, Jeffrey K Luttrull

Abstract

Medicinal lasers are a standard source of light to produce retinal tissue photocoagulation to treat retinovascular disease. The Diabetic Retinopathy Study and the Early Treatment Diabetic Retinopathy Study were large randomized clinical trials that have shown beneficial effect of retinal laser photocoagulation in diabetic retinopathy and have dictated the standard of care for decades. However, current treatment protocols undergo modifications. Types of lasers used in treatment of retinal diseases include argon, diode, dye and multicolor lasers, micropulse lasers and lasers for photodynamic therapy. Delivery systems include contact lens slit-lamp laser delivery, indirect ophthalmocope based laser photocoagulation and camera based navigated retinal photocoagulation with retinal eye-tracking. Selective targeted photocoagulation could be a future alternative to panretinal photocoagulation.

Keywords: Micropulse laser; Navigated laser; Pattern laser; Photocoagulation; Retinal Laser; Therapy.

Figures

Figure 1
Figure 1
(Case 1). Eye with diffuse center-involving diabetic macular edema: Fundus autofluorescence photograph (FAF) before (A) and after (B) transfoveal low-intensity high-density subthreshold diode micropulse laser (SDM). Note reduction in cystoid macular edema and severity of posterior retinopathy without evidence of laser-induced retinal damage. Fundus fluorescein angiogram before (C) and after (D) treatment. Note absence of laser-induced retinal damage. (E) Spectral-domain optical coherence tomogram before (above) and after (below) transfoveal SDM. Note reduction in DME without evidence of laser-induced retinal damage. (Images by Dr. J. Luttrull).
Figure 2
Figure 2
(Case 2). LEFT PANEL: Color fundus image of an eye with non-proliferative diabetic retinopathy and maculopathy showing dot blot hemorrhages and hard exudates in the macular area. RIGHT PANEL: Late phase fluorescein angiography showing multiple microaneurysms throughout the posterior pole.
Figure 3
Figure 3
(Case 2). LEFT PANEL: Optical coherence tomography thickness map of the same eye showing increased foveal thickness. RIGHT PANEL: Color fundus photograph of the same eye immediately after navigated focal laser photocoagulation showing a laser burn (white arrow) to the macular microaneurysm (please compare with pre-treatment color fundus photo from Fig. 2).
Figure 4
Figure 4
(Case 2). UPPER PANEL: Pre-treatment optical coherence tomography macular B-scan of the same eye showing intraretinal edema. LOWER PANEL: Post-treatment optical coherence tomography macular B-scan of the same eye showing resolution of the macular edema with residual intraretinal hard exudates.
Figure 5
Figure 5
(Case 2). Post-treatment optical coherence tomography retinal thickness map of the same eye showing resolution of the macular edema with laser spots (left side) and follow-up scan of the same retinal section showing the amount of thickness decrease (right side) (Image series by Dr. I. Kozak).
Figure 6
Figure 6
(Case 3). Wide-field late phase fluorescein angiogram of an eye with aggressive proliferative diabetic retinopathy showing areas of retinal non-perfusion and active neovascularization in spite of prior pattern short-pulse panretinal photocoagulation (Image by Dr. I. Kozak).
Figure 7
Figure 7
(Case 4). Intravenous fundus fluorescein angiogram before (A) and after (B) subthreshold diode micropulse (SDM) laser panretinal photocoagulation for severe non-proliferative diabetic retinopathy. Note reversal of retinopathy severity, reduction in micro- and macrovascular leakage, resolution of local retinal capillary non-perfusion, and absence of laser-induced retinal damage. Preoperative visual acuity 20/20; postoperative 20/15 (Images by Dr. J. Luttrull).
Figure 8
Figure 8
(Case 5). Wide-field fundus photo of an eye with proliferative diabetic retinopathy during navigated panretinal photocoagulation (A) with 100 ms pulse duration pattern as shown in final report (B) (Images by Dr. I. Kozak).

References

    1. Meyer-Schwickerath G. Light Coagulation: a method for treatment and prevention of the retinal detachment. Albert Von Graefes Arch Ophthalmol. 1954;156(1):2–34.
    1. Meyer-Schwickerath G. Prophylactic treatment of retinal detachment by light coagulation. Trans Ophthalmol Soc UK. 1956;76:739–750.
    1. Kapany N.S., Peppers N.A., Zweng H.C., Flocks M. Retinal photocoagulation by lasers. Nature. 1963;199:146–149.
    1. Noyori K.S., Campbell C.J., Rittler M.C., Koester C. Ocular thermal effects produced by photocoagulation. Arch Ophthalmol. 1963;70:817–822.
    1. Bridges W.B. Laser oscillation in singly ionized argon in visible spectrum. Appl Phys Lett. 1964;4:128.
    1. L’Esperance F.A., Jr. An ophthalmic argon laser photocoagulation system: design, construction, and laboratory investigations. Trans Am Ophthalmol Soc. 1968;66:827–904.
    1. The Diabetic Retinopathy Study Research Group Photocoagulation treatment of proliferative diabetic retinopathy: clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. Ophthalmology. 1981;88(7):583–600.
    1. Early Treatment Diabetic Retinopathy Study Research Group Techniques for scatter and local photocoagulation treatment of diabetic retinopathy. Early Treatment Diabetic Retinopathy Study Report Number 3. Int Ophthalmol Clin. 1987;27(4):254–264.
    1. Macula Photocoagulation Study Group Argon laser photocoagulation for senile macular degeneration: results of a randomized clinical trial. Arch Ophthalmol. 1982;100(6):912–918.
    1. Holzrichter J.F., Schawlow A.L. Design and analysis of flashlamp systems for pumping organic dye lasers. Ann N Y Acad Sci. 1969;168(3):703–714.
    1. Manson N., Marshall J., Mellerio J., Smart D. Comments on histological studies of gas laser lesions in humans and possible non-linear optical phenomena, together with experiments using a tuneable dye laser. Mod Probl Ophthalmol. 1972;10:114–128.
    1. Little H.L., Zweng H.C., Peabody R.R. Argon laser slit-lamp retinal photocoagulation. Trans Am Acad Ophthalmol Otolaryngol. 1970;74(1):85–97.
    1. Morgan C.M., Schatz H. Atrophic creep of the retinal pigment epithelium after focal macular photocoagulation. Ophthalmology. 1989;96(1):96–103.
    1. McDonald H.R., Schatz H. Macular edema following panretinal photocoagulation. Retina. 1985;5(1):5–10.
    1. Frank R.N. Visual fields and electroretinography following extensive photocoagulation. Arch Ophthalmol. 1975;93(8):591–598.
    1. McDonald H.R., Schatz H. Visual loss following panretinal photocoagulation for proliferative diabetic retinopathy. Ophthalmology. 1985;92(3):388–393.
    1. Akduman L., Olk R.J. Subthreshold (invisible) modified grid diode laser photocoagulation in diffuse diabetic macular edema (DDME) Ophthalmic Surg Lasers. 1999;30(9):706–714.
    1. Olk R.J., Friberg T.R., Stickney K.L., Akduman L., Wong K.L., Chen M.C. Ophthalmology. 1999;106(11):2082–2090.
    1. Luttrull J.K., Dorin G. Subthreshold diode micropulse photocoagulation as invisible retinal phototherapy for diabetic macular edema. A review. Curr Diab Rev. 2012;8:274–284.
    1. Roider J., Hillenkamp F., Flotte T.J., Birngruber R. Microphotocoagulation: selective effects of repetitive short laser pulses. Proc Natl Acad Sci USA. 1993;90(11):2037–2038.
    1. Pankratov M.M. Pulsed delivery of laser energy in experimental thermal retinal photocoagulation. Proc Soc Photo Opt Instrum Eng. 1990;1202:205–213.
    1. Dorin G. Subthreshold and micropulse photocoagulation. Semin Ophthalmol. 2003;18:147–153.
    1. Roider J., Michaud N.A., Flotte T.J., Birngruber R. Response of the retinal pigment epithelium to selective photocoagulation. Arch Ophthalmol. 1992;110(12):1786–1792.
    1. Vujosevic S., Bottega E., Casciano M., Pilotto E., Convento E., Midena E. Microperimetry and fundus autofluorescence in diabetic macular edema. Subthreshold micropulse diode laser versus modified Early Treatment Diabetic Retinopathy Study Laser photocoagulation. Retina. 2010;30:908–916.
    1. Roider J., Brinkmann R., Wirbelauer C., Laqua H., Birngruber R. Subthreshold (retinal pigment epithelium) photocoagulation in macular diseases: a pilot study. Br J Ophthalmol. 2000;84(1):40–47.
    1. Brinkmann R., Roider J., Birngruber R. Selective retina therapy (SRT): a review on methods, techniques, preclinical and first clinical results. Bull Soc Belge Ophthalmol. 2006;302:51–69.
    1. Journee-de Korver JG J.G., Oosterhius J.A., Kakebeeke-Kemme H.M., de Wolff-Rouendaal D. Transpupillary thermotherapy (TTT) by infrared irradiation of choroidal melanoma. Doc Ophthalmol. 1992;82(3):185–191.
    1. Kwon H.J., Ko J.S., Kim M., Lee C.S., Lee S.C. Prognosis of choroidal melanoma and the result of ruthenium brachytherapy combined with transpupillary thermotherapy in Korean patients. Br J Ophthalmol. 2013;97(5):653–658.
    1. Squirrell D.M., Stewart A.W., Joondeph B.C. Large-spot subthreshold infrared laser to treat diabetic macular edema. Retina. 2008;28(4):615–621.
    1. Kliman G.H., Puliafito C.A., Stern D., Borirakchanyavat S., Gregory W.A. Phthalocyanine photodynamic therapy: new strategy for closure of choroidal neovascularization. Lasers Surg Med. 1994;15(1):2–10.
    1. Schmidt-Erfurth U., Hasan T., Gragoudas E., Birngruber R. Selective occlusion of subretinal neovascularization with photodynamic therapy. Ophthalmologe. 1994;91(6):789–795.
    1. Miller J.W., Walsh A.W., Kramer M., Hasan T., Michaud N., Flotte T.J. Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-delivered benzoporphyrin. Arch Ophthalmol. 1995;113(6):810–818.
    1. Bressler N.M. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study group. Arch Ophthalmol. 2001;119(2):198–202.
    1. Luttrull J.K., Spink C.J. Prolonged choroidal hypofluorescence following verteporfin photodynamic therapy combined with intravitreal triamcinolone acetonide injection. Retina. 2007;27(6):688–692.
    1. Blumenkranz M.S., Yellachich D., Andersen D.E., Wiltberger M.W., Mordaunt D., Marcellino G.R. Semiautomated patterned scanning laser for retinal photocoagulation. Retina. 2006;26(3):370–376.
    1. Muqit M.M., Marcellino G.R., Gray J.C., McLauchlan R., Henson D.B., Young L.B. Pain responses of Pascal 20 ms multi-spot and 100 ms single-spot panretinal photocoagulation: Manchester Pascal Study, MAPASS report 2. Br J Ophthalmol. 2010;94(11):1493–1498.
    1. Nagpal M., Marlecha S., Nagpal K. Comparison of laser photocoagulation for diabetic retinopathy using 532-nm standard laser versus multisport pattern scan laser. Retina. 2010;30(3):452–458.
    1. Liesfeld B., Amthor K.U., Dowell D., Weber U., Teiwes W. Navigating comfortably across the retina. IFMBE Proc. 2009;25(11):243–246.
    1. Kozak I., Oster S.F., Cortes M.A., Dowell D., Hartmann K., Kim J.S. Clinical evaluation and treatment accuracy in diabetic macular edema using navigated laser photocoagulator NAVILAS. Ophthalmology. 2011;118(6):1119–1124.
    1. Kernt M., Cheuteu R., Vounotrypidis E., Haritoglou C., Kampik A., Ulbig M.W. Focal and panretinal photocoagulation with a navigated laser (NAVILAS®) Acta Ophthalmol. 2011;89(8):662–664.
    1. Kernt M., Cheuteu R.E., Cserhati S., Seidensticker F., Liegl R.G., Lang J. Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (Navilas) Clin Ophthalmol. 2012;6:289–296.
    1. Ober M.D., Kernt M., Cortes M.A., Kozak I. Time required for navigated macular laser photocoagulation treatment with the Navilas. Graefes Arch Clin Exp Ophthalmol. 2013;251(4):1049–1053.
    1. Kozak I., Kim J.S., Oster S.F., Chhablani J., Freeman W.R. Focal navigated laser photocoagulation in retinovascular disease: clinical results in initial case series. Retina. 2012;32(5):930–935.
    1. Early Treatment Diabetic Retinopathy Study Research Group Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report Number 1. Arch Ophthalmol. 1985;103:1796–1806.
    1. Lee C.M., Olk R.J. Modified grid laser photocoagulation for diffuse diabetic macular edema: long-term visual results. Ophthalmology. 1991;98:1594–1602.
    1. The Branch Vein Occlusion Study Group Argon laser photocoagulation for macular edema in branch vein occlusion. Am J Ophthalmol. 1984;98(3):271–282.
    1. Sanghvi C., McLauchlan R., Delgado C., Young L., Charles S.J., Marcellino G. Initial experience with the Pascal photocoagulator: a pilot study of 75 procedures. Br J Ophthalmol. 2008;92(8):1061–1064.
    1. Modi D., Chiranand P., Akduman L. Efficacy of patterned scan laser in the treatment of macular edema and retinal neovascularization. Clin Ophthalmol. 2009;3:465–470.
    1. Rufer F., Flohr C.M., Poerksen E., Roider J. Retinal laser coagulation with the pattern scanning laser-report of first clinical experience. Klin Monbl Augenheilkd. 2008;225(11):968–972.
    1. Pitcher J.D., Liu T., Prasad P.S., Schwartz S.D., Hubschman J.P. Short-duration focal pattern grid photocoagulation for macular edema secondary to branch retinal vein occlusion. Semin Ophthalmol. 2012;27(3–4):69–72.
    1. Bolz M., Kriechbaum K., Simader C., Deak G., Lammer J., Treu C. Diabetic Retinopathy Research Group Vienna. In vivo retinal morphology after grid laser treatment in diabetic macular edema. Ophthalmology. 2010;117(3):538–544.
    1. Lammer J., Bolz M., Baumann B., Pircher M., Gotzinger E., Mylonas G. Diabetic Retinopathy Research Group Vienna. Imaging retinal pigment epithelial proliferation secondary to PASCAL photocoagulation in vivo by polarization-sensitive optical coherence tomography. Am J Ophthalmol. 2013;155(6):1058–1607.
    1. Han D.P., Croskrey J.A., Dubis A.M., Schroeder B., Rha J., Carroll J. Adaptive optics and spectral-domain optical coherence tomography of human photoreceptor structure after short-duration Pascal macular grid and panretinal laser photocoagulation. Arch Ophthalmol. 2012;130(4):518–521.
    1. Luttrull J.K., Musch M.C., Mainster M.A. Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular edema. Br J Ophthalmol. 2005;89(1):74–80.
    1. Luttrull J.K., Sramek C., Palanker D., Spink C.J., Musch D.C. Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema. Retina. 2012;32(2):375–386.
    1. Lavinsky D., Cardillo J.A., Melo L.A., Jr, Dare A., Farah M.E., Belfort R., Jr. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema. Invest Ophthalmol Vis Sci. 2011;52:4314–4323.
    1. Chhablani J., Kozak I., Barteselli G., El-Emam S. A novel navigated laser system brings new efficacy to the treatment of retinovascular disorders. Oman J Ophthalmol. 2013;6(1):18–22.
    1. Jung J.J., Gallego-Pinazo R., Lleo-Perez A., Huz J.I., Barbazetto I.A. NAVILAS laser system focal treatment for diabetic macular edema – one year results of a case series. Open Ophthalmol J. 2013;7:48–53.
    1. Doft B.H., Blakenship G. Retinopathy risk factor regression after laser panretinal photocoagulation for proliferative diabetic retinopathy. Ophthalmology. 1984;91(12):1453–1457.
    1. Blakenship G.W. Fifteen-year argon laser and xenon photocoagulation results of Bascom Palmer Eye Institute’s patients participating in the diabetic retinopathy study. Ophthalmology. 1991;98(2):125–128.
    1. Bandello F., Brancato R., Menchini U., Virgili G., Lanzetta P., Ferrari E. Light panretinal photocoagulation (LPRP) versus classic panretinal photocoagulation (CPRP) in proliferative diabetic retinopathy. Semin Ophthalmol. 2001;16(1):12–18.
    1. Seiberth V., Schatanek S., Alexandridis E. Panretinal photocoagulation in diabetic retinopathy: argon versus dye laser coagulation. Graefes Arch Clin Exp Ophthalmol. 1993;231(6):318–322.
    1. Atmaca L.S., Idil A., Gunduz K. Dye laser in proliferative diabetic retinopathy and maculopathy. Acta Ophthalmol Scand. 1995;73(4):303–307.
    1. The Krypton Argon Regression Neovascularization Study report number 1 Randomized comparison of krypton versus argon scatter photocoagulation for diabetic disc neovascularization. Ophthalmology. 1993;100(11):1655–1664.
    1. Bandello F., Brancato R., Trabucchi G., Lattanzio R., Malegori A. Diode versus argon-green laser panretinal photocoagulation in proliferative diabetic retinopathy: a randomized study in 44 eyes with a long follow-up time. Greafes Arch Clin Exp Ophthalmol. 1993;231(9):491–494.
    1. Bandello F., Brancato R., Lattanzio R., Trabucchi G., Azzolini C., Malegori A. Double-frequency Nd:YAG laser vs. argon-green laser in the treatment of proliferative diabetic retinopathy: randomized study with long-term follow-up. Lasers Surg Med. 1996;19(2):173–176.
    1. Muqit M.M., Marcellino G.R., Henson D.B., Young L.B., Patton N., Charles S.J. Single-session vs multiple-session pattern scanning laser panretinal photocoagulation in proliferative diabetic retinopathy: Manchester Pascal Study. Arch Ophthalmol. 2010;128(5):525–533.
    1. Muqit M.M., Marcellino G.R., Henson D.B., Young L.B., Turner G.S., Stanga P.E. Pascal panretinal laser ablation and regression analysis in proliferative diabetic retinopathy: Manchester Pascal Study Report 4. Eye. 2011;25(11):1447–1456.
    1. Chappelow A.V., Tan K., Waheed N.K., Kaiser P.K. Panretinal photocoagulation for proliferative diabetic retinopathy: pattern scan laser versus argon laser. Am J Ophthalmol. 2012;153(1):137–142.
    1. Luttrull J.K., Spink C.J., Musch D.A. Subthreshold diode micropulse panretinal photocoagulation for proliferative diabetic retinopathy. Eye. 2008;22(5):60.
    1. Bressler S.B., Qin H., Melia M., Bressler N.M., Beck R.W., Chan C.K. Diabetic Retinopathy Clinical Research Network. Exploratory analysis of the effect of intravitreal ranibizumab or triamcinolone on worsening of diabetic retinopathy in a randomized clinical trial. JAMA Ophthalmol. 2013;131(8):1033–1040.
    1. Kozak I, Chhablani J, Mathai A, Rani P, Alshahrani S, Gupta V, et al. Comparison of the visible effect on the fundus in peripheral laser photocoagulation between conventional pattern laser and Navilas, presented at the13th EURETINA Congress, Hamburg, Germany, September 26–29, 2013.
    1. Blakenship G.W. A clinical comparison of central and peripheral argon laser panretinal photocoagulation for proliferative diabetic retinopathy. Ophthalmology. 1988;95(2):170–177.
    1. Reddy S., Hu A., Schwartz S.D. Ultra wide field fluorescein angiography guided targeted retinal photocoagulation (TRP) Semin Ophthalmol. 2009;24:9–14.
    1. Manivannan A., Plskova J., Farrow A., Mckay S., Sharp P.F., Forrester J.V. Ultra-wide-field fluorescein angiography of the ocular fundus. Am J Ophthalmol. 2005;140(3):525–527.
    1. Mackenzie P.J., Russell M., Ma P.E., Isbister C.M., Maberley D.A. Sensitivity and specificity of the Optos optomap for detecting peripheral retinal lesions. Retina. 2007;27(8):1119–1124.
    1. Friberg T.R., Gupta A., Yu J., Huang L., Suner I., Puliafito C.A. Ultrawide angle fluorescein angiographic imaging: a comparison to conventional digital acquisition systems. Ophthalmic Surg Lasers Imaging. 2008;39(4):304–311.
    1. Muqit M.M., Young L.B., McKenzie R., John B., Marcellino G.R., Henson D.B. Pilot randomized clinical trial of Pascal TargETEd Retinal versus variable fluence PANretinal 20 ms laser in diabetic retinopathy: PETER PAN study. Br J Ophthalmol. 2013;97(2):220–227.
    1. Muqit M.M., Marcellino G.R., Henson D.B., Young L.B., Patton N., Charles S.J. Optos-guided pattern scan laser (Pascal)-targeted retinal photocoagulation in proliferative diabetic retinopathy. Acta Ophthalmol. 2013;91(3):251–258.
    1. Spaide R.F. Prospective study of peripheral panretinal photocoagulation of areas of nonperfusion in central retinal vein occlusion. Retina. 2013;33(1):56–62.

Source: PubMed

3
Sottoscrivi