Effect of Liraglutide on Arterial Inflammation Assessed as [18F]FDG Uptake in Patients With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial

Rasmus S Ripa, Emilie H Zobel, Bernt J von Scholten, Jacob K Jensen, Tina Binderup, Lars J Diaz, Viktor R Curovic, Tine W Hansen, Peter Rossing, Andreas Kjaer, Rasmus S Ripa, Emilie H Zobel, Bernt J von Scholten, Jacob K Jensen, Tina Binderup, Lars J Diaz, Viktor R Curovic, Tine W Hansen, Peter Rossing, Andreas Kjaer

Abstract

Background: The mechanism behind the cardiovascular protection observed with human GLP-1 RA (glucagon-like peptide-1 receptor agonists) in type 2 diabetes is unknown. We hypothesized that treatment with the GLP-1 RA liraglutide had a positive effect on vascular inflammation.

Methods: LIRAFLAME (Effect of liraglutide on vascular inflammation in type-2 diabetes: A randomized, placebocontrolled, double-blind, parallel clinical PET/CT trial) was a double-blind, randomized controlled trial performed at a single university hospital clinic in Denmark. Patients with type 2 diabetes were via computer-generated randomization list assigned (1:1) liraglutide up to 1.8 mg or placebo once daily for 26 weeks. The primary end point was change in vascular inflammation over 26 weeks assessed by [18F]-fluorodeoxyglucose positron emission tomography/computed tomography. Analyses were based on intention-to-treat. Key secondary outcomes included change in other indices of atherosclerosis.

Results: Between October 26, 2017, and August 16, 2019, 147 patients were screened and 102 were randomly assigned to liraglutide (n=51) or placebo (n=51) and 99 (97%) completed the trial. Change in the [18F]-fluorodeoxyglucose positron emission tomography measure of vascular inflammation (active-segment target-to-background ratio) did not differ between treatment groups: change from baseline to 26 weeks was -0.04 (95% CI, -0.17 to 0.08) in the liraglutide group compared with -0.09 (-0.19 to 0.01) in the placebo group (mean difference, 0.05 [95% CI, -0.11 to 0.21], P=0.53). Secondary analyses restricted to [18F]-fluorodeoxyglucose positron emission tomography of the carotid arteries as well as other indices of atherosclerosis confirmed the primary result. We performed an explorative analysis of interaction between treatment group and history of cardiovascular disease (P=0.052).

Conclusions: In this low to moderate risk population with type 2 diabetes, liraglutide did not change vascular inflammation assessed as [18F]-fluorodeoxyglucose uptake compared with placebo. An explorative analysis indicated a possible effect in persons with history of cardiovascular disease, in line with current guidelines where liraglutide is recommended to patients with history of cardiovascular disease. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03449654.

Keywords: Type 2 Diabetes; atherosclerosis; cardiovascular diseases; carotid arteries; glucagon-like peptide 1; inflammation.

Figures

Figure 1.
Figure 1.
[18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) imaging approach. The abdominal aorta, the thoracic aorta, and the carotid arteries were identified and manually traced with free hand or ellipse regions of interest (ROI) on all axial CT images without use of the PET images. Afterwards the ROIs were copied onto the spatially aligned PET examination as shown in the figure. The FDG uptake was quantified in each ROI as the standardized uptake value (SUV) by measuring a maximum pixel activity value (SUVmax). Target-to-background ratio was finally calculated as a ratio of SUVmax and the average blood SUV estimated from venous blood in the superior cava vein or the jugular vein.
Figure 2.
Figure 2.
Trial profile. eGFR indicates estimated glomerular filtration rate.
Figure 3.
Figure 3.
Arterial inflammation evaluated with [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) in the liraglutide and the placebo-treated group. A, Mean change from baseline to end-of-treatment in active segments target-to-background ratio for the liraglutide group and the placebo group (primary end point). Mean plots with SE. Unpaired t test for comparison. B, Representative [18F]FDG-PET/computed tomography images from a participant treated with liraglutide. The ascending thoracic aorta is outlined at baseline and follow-up examination.
Figure 4.
Figure 4.
Arterial inflammation evaluated with [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) in the subgroup of patients with and without cardiovascular disease. Mean change from baseline to end-of-treatment in most diseased segment target-to-background ratio for the liraglutide group and the placebo group in subgroups of patients with and without cardiovascular disease (CVD). Mean plots with SE. Unpaired t test for comparison of the change from baseline to end-of-treatment between the groups.

References

    1. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, et al. ; LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016; 375:311–322. doi: 10.1056/NEJMoa1603827
    1. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, et al. ; SUSTAIN-6 Investigators. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016; 375:1834–1844. doi: 10.1056/NEJMoa1607141
    1. Hernandez AF, Green JB, Janmohamed S, D’Agostino RB, Sr, Granger CB, Jones NP, Leiter LA, Rosenberg AE, Sigmon KN, Somerville MC, et al. ; Harmony Outcomes committees and investigators. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018; 392:1519–1529. doi: 10.1016/S0140-6736(18)32261-X
    1. Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, Probstfield J, Riesmeyer JS, Riddle MC, Rydén L, et al. ; REWIND Investigators. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019; 394:121–130. doi: 10.1016/S0140-6736(19)31149-3
    1. Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, D’Alessio DA, Davies MJ. 2019 update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020; 43:487–493. doi: 10.2337/dci19-0066
    1. Zobel EH, von Scholten BJ, Goldman B, Persson F, Hansen TW, Rossing P. Pleiotropic effects of liraglutide in patients with type 2 diabetes and moderate renal impairment: individual effects of treatment. Diabetes Obes Metab. 2019; 21:1261–1265. doi: 10.1111/dom.13638
    1. Rakipovski G, Rolin B, Nohr J, Klewe I, Frederiksen KS, Augustin R, Hecksher-Sorensen J, Ingvorsen C, Polex-Wolf J, Knudsen LB. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE(-/-) and LDLr(-/-) mice by a mechanism that includes inflammatory pathways. J Am Coll Cardiol Basic Trans Science. 2018; 3:844–857
    1. von Scholten BJ, Persson F, Rosenlund S, Eugen-Olsen J, Pielak T, Faber J, Hansen TW, Rossing P. Effects of liraglutide on cardiovascular risk biomarkers in patients with type 2 diabetes and albuminuria: a sub-analysis of a randomized, placebo-controlled, double-blind, crossover trial. Diabetes Obes Metab. 2017; 19:901–905. doi: 10.1111/dom.12884
    1. Bucerius J, Hyafil F, Verberne HJ, Slart RH, Lindner O, Sciagra R, Agostini D, Übleis C, Gimelli A, Hacker M; Cardiovascular Committee of the European Association of Nuclear Medicine (EANM). Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis. Eur J Nucl Med Mol Imaging. 2016; 43:780–792. doi: 10.1007/s00259-015-3259-3
    1. Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, Fuster V, Ballantyne CM, Stein EA, Tardif JC, et al. ; dal-PLAQUE Investigators. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011; 378:1547–1559. doi: 10.1016/S0140-6736(11)61383-4
    1. van der Valk FM, Verweij SL, Zwinderman KA, Strang AC, Kaiser Y, Marquering HA, Nederveen AJ, Stroes ES, Verberne HJ, Rudd JH. Thresholds for arterial wall inflammation quantified by (18)F-FDG PET imaging: implications for vascular interventional studies. JACC Cardiovasc Imaging. 2016; 9:1198–1207. doi: 10.1016/j.jcmg.2016.04.007
    1. Nagashima M, Watanabe T, Terasaki M, Tomoyasu M, Nohtomi K, Kim-Kaneyama J, Miyazaki A, Hirano T. Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice. Diabetologia. 2011; 54:2649–2659. doi: 10.1007/s00125-011-2241-2
    1. Tashiro Y, Sato K, Watanabe T, Nohtomi K, Terasaki M, Nagashima M, Hirano T. A glucagon-like peptide-1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis. Peptides. 2014; 54:19–26. doi: 10.1016/j.peptides.2013.12.015
    1. Arakawa M, Mita T, Azuma K, Ebato C, Goto H, Nomiyama T, Fujitani Y, Hirose T, Kawamori R, Watada H. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes. 2010; 59:1030–1037. doi: 10.2337/db09-1694
    1. Gaspari T, Welungoda I, Widdop RE, Simpson RW, Dear AE. The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on atherogenesis, plaque stability and endothelial function in an ApoE(-/-) mouse model. Diab Vasc Dis Res. 2013; 10:353–360. doi: 10.1177/1479164113481817
    1. Helmstädter J, Frenis K, Filippou K, Grill A, Dib M, Kalinovic S, Pawelke F, Kus K, Kröller-Schön S, Oelze M, et al. . Endothelial GLP-1 (glucagon-like peptide-1) receptor mediates cardiovascular protection by liraglutide in mice with experimental arterial hypertension. Arterioscler Thromb Vasc Biol. 2020; 40:145–158. doi: 10.1161/atv.0000615456.97862.30
    1. Balestrieri ML, Rizzo MR, Barbieri M, Paolisso P, D’Onofrio N, Giovane A, Siniscalchi M, Minicucci F, Sardu C, D’Andrea D, et al. . Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. Diabetes. 2015; 64:1395–1406. doi: 10.2337/db14-1149
    1. Hogan AE, Gaoatswe G, Lynch L, Corrigan MA, Woods C, O’Connell J, O’Shea D. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia. 2014; 57:781–784. doi: 10.1007/s00125-013-3145-0
    1. Koska J, Saremi A, Bahn G, Yamashita S, Reaven PD; Veterans Affairs Diabetes Trial Investigators. The effect of intensive glucose lowering on lipoprotein particle profiles and inflammatory markers in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care. 2013; 36:2408–2414. doi: 10.2337/dc12-2082
    1. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, et al. ; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017; 377:1119–1131. doi: 10.1056/NEJMoa1707914
    1. Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, et al. . Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019; 381:2497–2505. doi: 10.1056/NEJMoa1912388
    1. Everett BM, Donath MY, Pradhan AD, Thuren T, Pais P, Nicolau JC, Glynn RJ, Libby P, Ridker PM. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J Am Coll Cardiol. 2018; 71:2392–2401. doi: 10.1016/j.jacc.2018.03.002
    1. Graebe M, Pedersen SF, Højgaard L, Kjaer A, Sillesen H. 18FDG PET and ultrasound echolucency in carotid artery plaques. JACC Cardiovasc Imaging. 2010; 3:289–295. doi: 10.1016/j.jcmg.2010.01.001
    1. Tawakol A, Fayad ZA, Mogg R, Alon A, Klimas MT, Dansky H, Subramanian SS, Abdelbaky A, Rudd JH, Farkouh ME, et al. . Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J Am Coll Cardiol. 2013; 62:909–917. doi: 10.1016/j.jacc.2013.04.066
    1. Mizoguchi M, Tahara N, Tahara A, Nitta Y, Kodama N, Oba T, Mawatari K, Yasukawa H, Kaida H, Ishibashi M, et al. . Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes a prospective, randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. JACC Cardiovasc Imaging. 2011; 4:1110–1118. doi: 10.1016/j.jcmg.2011.08.007
    1. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefèbvre PJ, Murray GD, et al. ; PROactive Investigators. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005; 366:1279–1289. doi: 10.1016/S0140-6736(05)67528-9
    1. Schramm TK, Gislason GH, Vaag A, Rasmussen JN, Folke F, Hansen ML, Fosbøl EL, Køber L, Norgaard ML, Madsen M, et al. . Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J. 2011; 32:1900–1908. doi: 10.1093/eurheartj/ehr077
    1. Sadeghi MM. (18)F-FDG PET and vascular inflammation: time to refine the paradigm? J Nucl Cardiol. 2015; 22:319–324. doi: 10.1007/s12350-014-9917-1
    1. Al-Mashhadi RH, Tolbod LP, Bloch LØ, Bjørklund MM, Nasr ZP, Al-Mashhadi Z, Winterdahl M, Frøkiær J, Falk E, Bentzon JF. 18Fluorodeoxyglucose accumulation in arterial tissues determined by PET signal analysis. J Am Coll Cardiol. 2019; 74:1220–1232. doi: 10.1016/j.jacc.2019.06.057
    1. Silvola JM, Saraste A, Laitinen I, Savisto N, Laine VJ, Heinonen SE, Ylä-Herttuala S, Saukko P, Nuutila P, Roivainen A, et al. . Effects of age, diet, and type 2 diabetes on the development and FDG uptake of atherosclerotic plaques. JACC Cardiovasc Imaging. 2011; 4:1294–1301. doi: 10.1016/j.jcmg.2011.07.009
    1. Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, et al. . Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010; 375:2215–22. doi: 10.1016/S0140-6736(10)60484-9
    1. Bucerius J, Hyafil F, Verberne HJ, Slart RH, Lindner O, Sciagra R, Agostini D, Übleis C, Gimelli A, Hacker M; Cardiovascular Committee of the European Association of Nuclear Medicine (EANM). Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis. Eur J Nucl Med Mol Imaging. 2016; 43:780–792. doi: 10.1007/s00259-015-3259-3
    1. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990; 15:827–832. doi: 10.1016/0735-1097(90)90282-t
    1. Moerland M, Kales AJ, Schrier L, van Dongen MG, Bradnock D, Burggraaf J. Evaluation of the EndoPAT as a tool to assess endothelial function. Int J Vasc Med. 2012; 2012:904141. doi: 10.1155/2012/904141

Source: PubMed

3
Sottoscrivi