Magnetic Resonance Biomarkers in Neonatal Encephalopathy (MARBLE): a prospective multicountry study

Peter J Lally, Shreela Pauliah, Paolo Montaldo, Badr Chaban, Vania Oliveira, Alan Bainbridge, Aung Soe, Santosh Pattnayak, Paul Clarke, Prakash Satodia, Sundeep Harigopal, Laurence J Abernethy, Mark A Turner, Angela Huertas-Ceballos, Seetha Shankaran, Sudhin Thayyil, Peter J Lally, Shreela Pauliah, Paolo Montaldo, Badr Chaban, Vania Oliveira, Alan Bainbridge, Aung Soe, Santosh Pattnayak, Paul Clarke, Prakash Satodia, Sundeep Harigopal, Laurence J Abernethy, Mark A Turner, Angela Huertas-Ceballos, Seetha Shankaran, Sudhin Thayyil

Abstract

Introduction: Despite cooling, adverse outcomes are seen in up to half of the surviving infants after neonatal encephalopathy. A number of novel adjunct drug therapies with cooling have been shown to be highly neuroprotective in animal studies, and are currently awaiting clinical translation. Rigorous evaluation of these therapies in phase II trials using surrogate MR biomarkers may speed up their bench to bedside translation. A recent systematic review of single-centre studies has suggested that MR spectroscopy biomarkers offer the best promise; however, the prognostic accuracy of these biomarkers in cooled encephalopathic babies in a multicentre setting using different MR scan makers is not known.

Methods and analysis: The MR scanners (3 T; Philips, Siemens, GE) in all the participating sites will be harmonised using phantom experiments and healthy adult volunteers before the start of the study. We will then recruit 180 encephalopathic infants treated with whole body cooling from the participating centres. MRI and spectroscopy will be performed within 2 weeks of birth. Neurodevelopmental outcomes will be assessed at 18-24 months of age. Agreement between MR cerebral biomarkers and neurodevelopmental outcome will be reported. The sample size is calculated using the 'rule of 10', generally used to calculate the sample size requirements for developing prognostic models. Considering 9 parameters, we require 9×10 adverse events, which suggest that a total sample size of 180 is required.

Ethics and dissemination: Human Research Ethics Committee approvals have been received from Brent Research Ethics Committee (London), and from Imperial College London (Sponsor). We will submit the results of the study to relevant journals and offer national and international presentations.

Trial registration number: Clinical Trials.gov Number: NCT01309711.

Keywords: NEONATOLOGY; NEUROLOGY.

Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

References

    1. Thayyil S, Chandrasekaran M, Taylor A et al. . Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics 2010;125:e382–95. 10.1542/peds.2009-1046
    1. Harrell FE. Regression modelling strategies. 1st edn Springer, 2001.
    1. Pierrat V, Haouari N, Liska A et al. . Prevalence, causes, and outcome at 2 years of age of newborn encephalopathy: population based study. Arch Dis Child Fetal Neonatal Ed 2005;90:F257–61. 10.1136/adc.2003.047985
    1. Marlow N, Budge H. Prevalence, causes, and outcome at 2 years of age of newborn encephalopathy. Arch Dis Child Fetal Neonatal Ed 2005;90:F193–4. 10.1136/adc.2004.057059
    1. Lawn JE, Cousens S, Zupan J, Lancet Neonatal Survival Steering Team. 4 million neonatal deaths: When? Where? Why? Lancet 2005;365:891–900. 10.1016/S0140-6736(05)71048-5
    1. de Vries LS, Jongmans MJ. Long-term outcome after neonatal hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 2010;95:F220–4. 10.1136/adc.2008.148205
    1. Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 2010;86:329–38. 10.1016/j.earlhumdev.2010.05.010
    1. Gluckman PD, Wyatt JS, Azzopardi D et al. . Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 2005;365:663–70. 10.1016/S0140-6736(05)17946-X
    1. Azzopardi D, Strohm B, Edwards A et al. . Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 2009;361:1349–58. 10.1056/NEJMoa0900854
    1. Shankaran S, Laptook AR, Ehrenkranz RA et al. . Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005;353:1574–84. 10.1056/NEJMcps050929
    1. Edwards AD, Brocklehurst P, Gunn AJ et al. . Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 2010;340:c363 10.1136/bmj.c363
    1. Shankaran S, Pappas A, McDonald SA et al. . Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med 2012;366:2085–92. 10.1056/NEJMoa1112066
    1. Papile LA, Baley JE Benitz W et al. , Committee on Fetus and Newborn. Hypothermia and neonatal encephalopathy. Pediatrics 2014;133:1146–50. 10.1542/peds.2014-0899
    1. Cilio MR, Ferriero DM. Synergistic neuroprotective therapies with hypothermia. Semin Fetal Neonatal Med 2010;15:293–8. 10.1016/j.siny.2010.02.002
    1. Loetscher PD, Rossaint J, Rossaint R et al. . Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit Care 2009;13:R206 10.1186/cc8214
    1. Robertson NJ, Thayyil S, Cady EB et al. . Magnetic resonance spectroscopy biomarkers in term perinatal asphyxial encephalopathy: from neuropathological correlates to future clinical applications. Curr Pediatr Rev 2014;10:37–47. 10.2174/157339631001140408120613
    1. Amess PN, Penrice J, Wylezinska M et al. . Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain injury. Dev Med Child Neurol 1999;41:436–45.
    1. Barkovich AJ, Baranski K, Vigneron D et al. . Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol 1999;20:1399–405.
    1. Cheong JL, Cady EB, Penrice J et al. . Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. AJNR Am J Neuroradiol 2006;27:1546–54.
    1. Benedetti B, Rigotti D, Liu S et al. . Reproducibility of the whole-brain N-acetylaspartate level across institutions, MR scanners, and field strengths. AJNR Am J Neuroradiol 2007;28:72–5.
    1. Gu M, Kim DH, Mayer D et al. . Reproducibility study of whole-brain 1H spectroscopic imaging with automated quantification. Magn Reson Med 2008;60:542–7. 10.1002/mrm.21713
    1. Fatouros PP, Heath DL, Beaumont A et al. . Comparison of NAA measures by MRS and HPLC. Acta Neurochir Suppl 2000;76:35–7.
    1. Wu RH, Lin R, Li H et al. . Accuracy of noninvasive quantification of brain NAA concentrations using PRESS sequence: verification in a swine model with external standard. Conf Proc IEEE Eng Med Biol Soc 2005;2:1396–9. 10.1109/IEMBS.2005.1616690
    1. Tusor N, Wusthoff C, Smee N et al. . Prediction of neurodevelopmental outcome after hypoxic-ischemic encephalopathy treated with hypothermia by diffusion tensor imaging analyzed using tract-based spatial statistics. Pediatr Res 2012;72:63–9. 10.1038/pr.2012.40
    1. Smith SM, Jenkinson M, Johansen-Berg H et al. . Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006;31:1487–505. 10.1016/j.neuroimage.2006.02.024
    1. Tann C, Nakakeeto M, Hagmann C et al. . 8.10 Cranial ultrasound findings suggest that the injury pathway may begin many hours before delivery in encephalopathic infants in Uganda. Arch Dis Child Fetal Neonatal Ed 2014;99(Suppl 1):A14–15. 10.1136/archdischild-2014-306576.39
    1. Thoresen M, Hellström-Westas L, Liu X et al. . Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics 2010;126:e131–9. 10.1542/peds.2009-2938
    1. Shankaran S, Laptook AR, Tyson JE et al. . Evolution of encephalopathy during whole body hypothermia for neonatal hypoxic-ischemic encephalopathy. J Pediatr 2012;160:567–72.e3. 10.1016/j.jpeds.2011.09.018
    1. Shankaran S, Pappas A, McDonald SA et al. . Predictive value of an early amplitude integrated electroencephalogram and neurologic examination. Pediatrics 2011;128:e112–20. 10.1542/peds.2010-2036
    1. Rutherford M, Ramenghi LA, Edwards AD et al. . Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol 2010;9:39–45. 10.1016/S1474-4422(09)70295-9
    1. Jenkinson M, Beckmann CF, Behrens TE et al. . Fsl. Neuroimage 2012;62:782–90. 10.1016/j.neuroimage.2011.09.015
    1. Zhang H, Yushkevich PA, Alexander DC et al. . Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med Image Anal 2006;10:764–85. 10.1016/j.media.2006.06.004
    1. Porter EJ, Counsell SJ, Edwards AD et al. . Tract-based spatial statistics of magnetic resonance images to assess disease and treatment effects in perinatal asphyxial encephalopathy. Pediatr Res 2010;68:205–9. 10.1203/PDR.0b013e3181e9f1ba
    1. Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 2009;44:83–98. 10.1016/j.neuroimage.2008.03.061
    1. Mercuri E, Guzzetta A, Haataja L et al. . Neonatal neurological examination in infants with hypoxic ischaemic encephalopathy: correlation with MRI findings. Neuropediatrics 1999;30:83–9. 10.1055/s-2007-973465
    1. Gorter JW, Ketelaar M, Rosenbaum P et al. . Use of the GMFCS in infants with CP: the need for reclassification at age 2 years or older. Dev Med Child Neurol 2009;51:46–52. 10.1111/j.1469-8749.2008.03117.x
    1. Public Health England. NHS Newborn Hearing Screening Programme. NHS England Publications 2015:1–32.
    1. Baker N. In biomarkers we trust? Nat Biotechnol 2005;23:297–304.

Source: PubMed

3
Sottoscrivi