The effect of dexmedetomidine on inflammatory response of septic rats

Jianxing Zhang, Zhipeng Wang, Yan Wang, Guobin Zhou, Hongying Li, Jianxing Zhang, Zhipeng Wang, Yan Wang, Guobin Zhou, Hongying Li

Abstract

Background: Some studies have demonstrated dexmedetomidine has anti-inflammatory effect on septic rats. However, the mechanism of how dexmedetomidine exerts these effects is still remained unknown. This study was designed to investigate the mechanism of how dexmedetomidine inhibits the production of inflammatory mediators in cecal ligation and puncturinduced septic rats.

Methods: 48 Sprague-Dawley rats were randomly divided into six groups: sham-operated (sham) group, cecal ligation and puncture (CLP) group, dexmedetomidine 5 μg/kg (DEX5) group, dexmedetomidine 10 μg/kg (DEX10) group,dexmedetomidine + yohimbine (DEX10 + Yoh) group and yohimibine group (Yoh). Blood, bronchoalveolarlavage fluid (BALF) and lung tissues in each group were collected at six hours after dexmedetomidine or yohimbine treatment,. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in BALF and plasma were measured by enzyme-linked immunosorbent assay (ELISA). Toll-like receptor-4(TLR4) and myeloid differerntiation factor(MyD88) expression were measuredby quantitative PCR, and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation were determined by western blott.

Results: Compared with CLP group, dexmedetomidine significantly decreased not only the production of TNF-α and IL-6 both in plasma and BALF, but also inhibited the expression of TLR4 and MyD88 in mRNA level and the activation of ERK1/2 and NF-κB in the lung tissues of CLP-induced septic rats. All these effects could not be reversed by yohimibine.

Conclusions: Dexmedetomidine treatment can effectively reduce the generation of inflammatory mediators in the plasma and BALF of CLP-induced septic rats. These effects of dexmedetomidine rely on TLR4/MyD88/MAPK/ NF-κB signaling pathway and are independent of α2-adrenoceptor.

Figures

Figure 1
Figure 1
ELISA analysis of TNF-α and IL-6 expression in BALF and plasma. Rats were treated with dexmedetomidine (5 μg/kg or 10 μg/kg), or yohimbine(1.0 mg/kg) for six hours after CLP or operation. ELISA analysis of TNF-α, and IL-6 expression in BALF (A) and plasma (B). The data were presented as the mean ± standard deviation.*P < 0.05 and **P < 0.01 vs. the sham group; #P < 0.05 and ##P < 0.01vs. CLP group,n = 8.
Figure 2
Figure 2
The expression of TLR4 mRNA (A) and Myd88 mRNA (B) in lung tissues. Rats were treated with dexmedetomidine (5 μg/kg or 10 μg/kg), or yohimbine(1.0 mg/kg) for six hours after CLP or operation. The expression of TLR4 mRNA (A) and Myd88 mRNA (B) in lung tissues were measured by RT-PCR . Datas were presented as the mean ± standard deviation. *P < 0.05 and **P < 0.01 vs. the sham group; #P < 0.05 and ##P < 0.01vs. CLP group, n = 8.
Figure 3
Figure 3
Western blot analysis of P-ERK and NF-κB p65. Rats were treated with dexmedetomidine (5 μg/kg or 10 μg/kg), or yohimbine(1.0 mg/kg) for six hours after CLP or operation. P-ERK and NF-κB p65 activation in lung tissues were analyzed by Western blot (A); The correspondingly gray intensity analysis of the western blot were shown in (B) and (C). Data were presented as the mean ± standard deviation. *P < 0.05 and **P < 0.01 vs. the sham group;#P < 0.05 and ##P < 0.01vs. CLP group,n = 8.

References

    1. Gu J, Sun P, Zhao H, Watts HR, Sanders RD, Terrando N, et al. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice. Crit Care. 2011;15(3):R153. doi: 10.1186/cc10283.
    1. Wakabayashi G, Gelfand JA, Jung WK, Connolly RJ, Burke JF, Dinarello CA. Staphylococcus epidermidis induces complement activation, tumor necrosis factor and interleukin-1, a shock-like state and tissue injury in rabbits without endotoxemia. Comparison to Escherichia coli. J Clin Invest. 1991;87(6):1925–35. doi: 10.1172/JCI115218.
    1. Casey LC, Balk RA, Bone RC. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med. 1993;119(8):771–8. doi: 10.7326/0003-4819-119-8-199310150-00001.
    1. Marty C, Misset B, Tamion F, Fitting C, Carlet J, Cavaillon JM. Circulating interleukin-8 concentrations in patients with multiple organ failure of septic and nonseptic origin. Crit Care Med. 1994;22(4):673–9. doi: 10.1097/00003246-199404000-00025.
    1. Damas P, Reuter A, Gysen P, Demonty J, Lamy M, Franchimont P. Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Crit Care Med. 1989;17(10):975–8. doi: 10.1097/00003246-198910000-00001.
    1. Bhana N, Goa KL, McClellan KJ. Dexmedetomidine. Drugs. 2000;59(2):263–8. doi: 10.2165/00003495-200059020-00012.
    1. Venn RM, Bradshaw CJ, Spencer R, Brealey D, Caudwell E, Naughton C, et al. Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit. Anaesthesia. 1999;54(12):1136–42. doi: 10.1046/j.1365-2044.1999.01114.x.
    1. Triltsch AE, Welte M, von Homeyer P, Grosse J, Genahr A, Moshirzadeh M, et al. Bispectral index-guided sedation with dexmedetomidine in intensive care: a prospective, randomized, double blind, placebo-controlled phase II study. Crit Care Med. 2002;30(5):1007–14. doi: 10.1097/00003246-200205000-00009.
    1. Bonnet F, Boico O, Rostaing S, Loriferne JF, Saada M. Clonidine-induced analgesia in postoperative patients: epidural versus intramuscular administration. Anesthesiology. 1990;72(3):423–7. doi: 10.1097/00000542-199003000-00004.
    1. Sezer A, Memis D, Usta U, Sut N. The effect of dexmedetomidine on liver histopathology in a rat sepsis model: an experimental pilot study. Ulus Travma Acil Cerrahi Derg. 2010;16(2):108–12.
    1. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM. Toll-like receptors in ischemia-reperfusion injury. Shock. 2009;32(1):4–16. doi: 10.1097/SHK.0b013e318193e333.
    1. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem. 1999;274(16):10689–92. doi: 10.1074/jbc.274.16.10689.
    1. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature. 2000;406(6797):782–7. doi: 10.1038/35021228.
    1. Shimamoto A, Pohlman TH, Shomura S, Tarukawa T, Takao M, Shimpo H. Toll-like receptor 4 mediates lung ischemia-reperfusion injury. Ann Thorac Surg. 2006;82(6):2017–23. doi: 10.1016/j.athoracsur.2006.06.079.
    1. Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–79. doi: 10.1146/annurev.iy.12.040194.001041.
    1. Schottelius AJ, Zugel U, Docke WD, Zollner TM, Rose L, Mengel A, et al. The role of mitogen-activated protein kinase-activated protein kinase 2 in the p38/TNF-alpha pathway of systemic and cutaneous inflammation. J Invest Dermatol. 2010;130(2):481–91. doi: 10.1038/jid.2009.218.
    1. Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4(1):31–6. doi: 10.1038/nprot.2008.214.
    1. Delong P, Murray JA, Cook CK. Mechanical ventilation in the management of acute respiratory distress syndrome. Semin Dial. 2006;19(6):517–24. doi: 10.1111/j.1525-139X.2006.00215.x.
    1. Tasdogan M, Memis D, Sut N, Yuksel M. Results of a pilot study on the effects of propofol and dexmedetomidine on inflammatory responses and intraabdominal pressure in severe sepsis. J Clin Anesth. 2009;21(6):394–400. doi: 10.1016/j.jclinane.2008.10.010.
    1. Aharoni R, Kayhan B, Arnon R. Therapeutic effect of the immunomodulator glatiramer acetate on trinitrobenzene sulfonic acid-induced experimental colitis. Inflamm Bowel Dis. 2005;11(2):106–15. doi: 10.1097/00054725-200502000-00003.
    1. Aharoni R, Kayhan B, Brenner O, Domev H, Labunskay G, Arnon R. Immunomodulatory therapeutic effect of glatiramer acetate on several murine models of inflammatory bowel disease. J Pharmacol Exp Ther. 2006;318(1):68–78. doi: 10.1124/jpet.106.103192.
    1. Aktunc E, Kayhan B, Arasli M, Gun BD, Barut F. The effect of atorvastatin and its role on systemic cytokine network in treatment of acute experimental colitis. Immunopharmacol Immunotoxicol. 2011;33(4):667–75. doi: 10.3109/08923973.2011.559475.
    1. Qiao H, Sanders RD, Ma D, Wu X, Maze M. Sedation improves early outcome in severely septic Sprague Dawley rats. Crit Care. 2009;13(4):R136. doi: 10.1186/cc8012.
    1. Taniguchi T, Kidani Y, Kanakura H, Takemoto Y, Yamamoto K. Effects of dexmedetomidine on mortality rate and inflammatory responses to endotoxin-induced shock in rats. Crit Care Med. 2004;32(6):1322–6. doi: 10.1097/01.CCM.0000128579.84228.2A.
    1. Venn RM, Bryant A, Hall GM, Grounds RM. Effects of dexmedetomidine on adrenocortical function, and the cardiovascular, endocrine and inflammatory responses in post-operative patients needing sedation in the intensive care unit. Br J Anaesth. 2001;86(5):650–6. doi: 10.1093/bja/86.5.650.
    1. Memis D, Hekimoglu S, Vatan I, Yandim T, Yuksel M, Sut N. Effects of midazolam and dexmedetomidine on inflammatory responses and gastric intramucosal pH to sepsis, in critically ill patients. Br J Anaesth. 2007;98(4):550–2. doi: 10.1093/bja/aem017.
    1. Krishnan J, Selvarajoo K, Tsuchiya M, Lee G, Choi S. Toll-like receptor signal transduction. Exp Mol Med. 2007;39(4):421–38. doi: 10.1038/emm.2007.47.
    1. Mollen KP, Anand RJ, Tsung A, Prince JM, Levy RM, Billiar TR. Emerging paradigm: toll-like receptor 4-sentinel for the detection of tissue damage. Shock. 2006;26(5):430–7. doi: 10.1097/01.shk.0000228797.41044.08.
    1. Bettoni I, Comelli F, Rossini C, Granucci F, Giagnoni G, Peri F, et al. Glial TLR4 receptor as new target to treat neuropathic pain: efficacy of a new receptor antagonist in a model of peripheral nerve injury in mice. Glia. 2008;56(12):1312–9. doi: 10.1002/glia.20699.
    1. Saito O, Svensson CI, Buczynski MW, Wegner K, Hua XY, Codeluppi S, et al. Spinal glial TLR4-mediated nociception and production of prostaglandin E(2) and TNF. Br J Pharmacol. 2010;160(7):1754–64. doi: 10.1111/j.1476-5381.2010.00811.x.
    1. Wu GJ, Chen TL, Ueng YF, Chen RM. Ketamine inhibits tumor necrosis factor-alpha and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation. Toxicol Appl Pharmacol. 2008;228(1):105–13. doi: 10.1016/j.taap.2007.11.027.
    1. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–80. doi: 10.1038/90609.
    1. O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7(5):353–64. doi: 10.1038/nri2079.
    1. Koay MA, Gao X, Washington MK, Parman KS, Sadikot RT, Blackwell TS, et al. Macrophages are necessary for maximal nuclear factor-kappa B activation in response to endotoxin. Am J Respir Cell Mol Biol. 2002;26(5):572–8. doi: 10.1165/ajrcmb.26.5.4748.

Source: PubMed

3
Sottoscrivi