CARbon DIoxide for the treatment of Febrile seizures: rationale, feasibility, and design of the CARDIF-study

Stephanie Ohlraun, Tobias Wollersheim, Claudia Weiß, Peter Martus, Steffen Weber-Carstens, Dietmar Schmitz, Markus Schuelke, Stephanie Ohlraun, Tobias Wollersheim, Claudia Weiß, Peter Martus, Steffen Weber-Carstens, Dietmar Schmitz, Markus Schuelke

Abstract

Background: 2-8% of all children aged between 6 months and 5 years have febrile seizures. Often these seizures cease spontaneously, however depending on different national guidelines, 20-40% of the patients would need therapeutic intervention. For seizures longer than 3-5 minutes application of rectal diazepam, buccal midazolam or sublingual lorazepam is recommended. Benzodiazepines may be ineffective in some patients or cause prolonged sedation and fatigue. Preclinical investigations in a rat model provided evidence that febrile seizures may be triggered by respiratory alkalosis, which was subsequently confirmed by a retrospective clinical observation. Further, individual therapeutic interventions demonstrated that a pCO2-elevation via re-breathing or inhalation of 5% CO2 instantly stopped the febrile seizures. Here, we present the protocol for an interventional clinical trial to test the hypothesis that the application of 5% CO2 is effective and safe to suppress febrile seizures in children.

Methods: The CARDIF (CARbon DIoxide against Febrile seizures) trial is a monocentric, prospective, double-blind, placebo-controlled, randomized study. A total of 288 patients with a life history of at least one febrile seizure will be randomized to receive either carbogen (5% CO2 plus 95% O2) or placebo (100% O2). As recurrences of febrile seizures mainly occur at home, the study medication will be administered by the parents through a low-pressure can fitted with a respiratory mask. The primary outcome measure is the efficacy of carbogen to interrupt febrile seizures. As secondary outcome parameters we assess safety, practicability to use the can, quality of life, contentedness, anxiousness and mobility of the parents.

Prospect: The CARDIF trial has the potential to develop a new therapy for the suppression of febrile seizures by redressing the normal physiological state. This would offer an alternative to the currently suggested treatment with benzodiazepines. This study is an example of academic translational research from the study of animal physiology to a new therapy.

Trial registration: ClinicalTrials.gov identifier: NCT01370044.

Figures

Figure 1
Figure 1
The application device. (A) Low-pressure can containing 6 liter of the study medication with attached, loosely fitting, “one-size for all” respiratory mask. Pressing on the grey cantilever initiates the gas flow. (B) Application of the study medication to a child. The parents are advised to press on the grey cantilever until the audible gas-flow has stopped (after ≈3 minutes).
Figure 2
Figure 2
Experimental setting. Assessment of inspiratory & endtidal pCO2, respiratory volume & rates, air flow velocity & pressure was done using an artificial lung, a pCO2-sensor, a pneumotychograph, and an anatomical facsimile of a face with nasopharynx and oral cavity of a 2 year-old child. Accordingly, anatomical dead space was adjusted to 40 ml.
Figure 3
Figure 3
Inspiratory and endtidal pCO2 concentrations. (A-B) Course of the inspiratory and endtidal pCO2 using the experimental setting described in Figure 2. The gas flow was started after 50 seconds and continued for 60 seconds. The experiment was repeated with two different respiratory rates and tidal volumes: (A) 30/min | 90 ml (corresponding to 2-year-old child) and (B) 40/min | 65 ml (corresponding to a 9-months-old infant). In both cases we observed an increase of the inspiratory pCO2 by a maximum of ≈20 mmHg. (C-D)In vivo respiration of 6 liter CO2 over 3 minutes: the gas flow was again started at 50 seconds. The panels depict two different experimental conditions: (C) The test person tried to maintain a respiratory rate of 40/min in synchrony with a metronome over the entire period. Under these conditions the endtidal pCO2 rose by 7 mmHg. In setting (D) the test person had hyperventilated before the start of the gas flow. Starting from a lower pCO2 of 17 mmHg, the pCO2 again rose by 7 mmHg.
Figure 4
Figure 4
Flow diagram of the CARDIF-trial.

References

    1. Guidelines for epidemiologic studies on epilepsy. Commission on epidemiology and prognosis, international league against epilepsy. Epilepsia. 1993;34:592–596.
    1. Nelson KB, Ellenberg JH. Predictors of epilepsy in children who have experienced febrile seizures. N Engl J Med. 1976;295:1029–1033. doi: 10.1056/NEJM197611042951901.
    1. Verity CM, Golding J. Risk of epilepsy after febrile convulsions: a national cohort study. BMJ. 1991;303:1373–1376. doi: 10.1136/bmj.303.6814.1373.
    1. Hauser WA. The prevalence and incidence of convulsive disorders in childern. Epilepsia. 1994;35(Suppl):S1–S6.
    1. Shinnar S, Glauser TA. Febrile seizures. J Child Neurol. 2002;17(1 suppl):S44–S52. doi: 10.1177/08830738020170010601.
    1. Waruiru C, Appleton R. Febrile seizures: an update. Arch Dis Child. 2004;89:751–756. doi: 10.1136/adc.2003.028449.
    1. Vestergaard M, Christensen J. Register-based studies on febrile seizures in Denmark. Brain Dev. 2009;31:372–377. doi: 10.1016/j.braindev.2008.11.012.
    1. Hesdorffer DC, Benn EKT, Bagiella E, Nordli D, Pellock J, Hinton V, Shinnar S. Team for the FS. Distribution of febrile seizure duration and associations with development. Ann Neurol. 2011;70:93–100. doi: 10.1002/ana.22368.
    1. Capovilla G, Mastrangelo M, Romeo A, Vigevano F. Recommendations for the management of “febrile seizures” Ad hoc task force of LICE guidelines commission. Epilepsia. 2009;50:2–6.
    1. Duffner PK, Baumann RJ, Berman P, Green JL, Schneider S, Hodgson ES, Glade GB, Harbaugh N Jr, McInerny TK, Miller MR, Moyer VA, Sevilly XD, Simpson L, Takata GS. for the steering committee on quality improvement and management, subcommittee on febrile seizures. Febrile seizures: clinical practice guideline for the long-term management of the child with simple febrile seizures. Pediatrics. 2008;121:1281–1286.
    1. Knudsen FU. Febrile seizures: treatment and prognosis. Epilepsia. 2000;41:2–9.
    1. Annegers JF, Hauser WA, Shirts SB, Kurland LT. Factors prognostic of unprovoked seizures after febrile convulsions. N Engl J Med. 1987;316:493–498. doi: 10.1056/NEJM198702263160901.
    1. Berg AT. Febrile seizures and epilepsy: the contributions of epidemiology. Paediatr Perinat Epidemiol. 1992;6:145–152. doi: 10.1111/j.1365-3016.1992.tb00756.x.
    1. Hesdorffer DC, Shinnar S, Lewis DV, Moshé SL, Nordli DR, Pellock JM, MacFall J, Shinnar RC, Masur D, Frank LM, Epstein LG, Litherland C, Seinfeld S, Bello JA, Chan S, Bagiella E, Sun S. Team for the F study. Design and phenomenology of the FEBSTAT study. Epilepsia. 2012;53:1471–1480. doi: 10.1111/j.1528-1167.2012.03567.x.
    1. Shinnar S, Bello JA, Chan S, Hesdorffer DC, Lewis DV, MacFall J, Pellock JM, Nordli DR, Frank LM, Moshe SL, Gomes W, Shinnar RC, Sun S. MRI abnormalities following febrile status epilepticus in children the FEBSTAT study. Neurology. 2012;79:871–877. doi: 10.1212/WNL.0b013e318266fcc5.
    1. Knudsen FU. Rectal administration of diazepam in solution in the acute treatment of convulsions in infants and children. Arch Dis Child. 1979;54:855–857. doi: 10.1136/adc.54.11.855.
    1. Hoppu K, Santavuori P. Diazepam rectal solution for home treatment of acute seizures in children. Acta Paediatr Scand. 1981;70:369–372. doi: 10.1111/j.1651-2227.1981.tb16565.x.
    1. Norris E, Marzouk O, Nunn A, McIntyre J, Choonara I. Respiratory depression in children receiving diazepam for acute seizures: a prospective study. Dev Med Child Neurol. 1999;41:340–343. doi: 10.1017/S0012162299000742.
    1. McIntyre J, Robertson S, Norris E, Appleton R, Whitehouse WP, Phillips B, Martland T, Berry K, Collier J, Smith S, Choonara I. Safety and efficacy of buccal midazolam versus rectal diazepam for emergency treatment of seizures in children: a randomised controlled trial. The Lancet. 2005;16(366):205–210.
    1. Appleton R, Sweeney A, Choonara I, Robson J, Molyneux E. Lorazepam versus diazepam in the acute treatment of epileptic seizures and status epilepticus. Dev Med Child Neurol. 1995;37:682–688.
    1. Schuchmann S, Schmitz D, Rivera C, Vanhatalo S, Salmen B, Mackie K, Sipilä ST, Voipio J, Kaila K. Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med. 2006;12:817–823. doi: 10.1038/nm1422.
    1. Schuchmann S, Hauck S, Henning S, Grüters-Kieslich A, Vanhatalo S, Schmitz D, Kaila K. Respiratory alkalosis in children with febrile seizures. Epilepsia. 2011;52:1949–1955. doi: 10.1111/j.1528-1167.2011.03259.x.
    1. Schuchmann S, Schmitz D, Grüters-Kieslich A, Vanhatolo S, Kaila K. Suppression of complex febrile seizures by elevating respiratory CO2 using a rebreathing technique – two case reports. Epilepsia. 2009;50(Suppl):245.
    1. Tolner EA, Hochman DW, Hassinen P, Otáhal J, Gaily E, Haglund MM, Kubová H, Schuchmann S, Vanhatalo S, Kaila K. Five percent CO2 is a potent, fast-acting inhalation anticonvulsant. Epilepsia. 2011;52:104–114. doi: 10.1111/j.1528-1167.2010.02731.x.
    1. Schuchmann S, Vanhatalo S, Kaila K. Neurobiological and physiological mechanisms of fever-related epileptiform syndromes. Brain Dev. 2009;31:378–382. doi: 10.1016/j.braindev.2008.11.011.
    1. Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel group randomized trials. Bmc Med Res Methodol. 2001;1:2. doi: 10.1186/1471-2288-1-2.
    1. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Trials. 2010;11:32. doi: 10.1186/1745-6215-11-32.
    1. Gorman JM, Browne ST, Papp LA, Martinez J, Welkowitz L, Coplan JD, Goetz RR, Kent J, Klein DF. Effect of antipanic treatment on response to carbon dioxide. Biol Psychiatry. 1997;42:982–991. doi: 10.1016/S0006-3223(97)00160-1.
    1. Bauer P, Köhne K. Evaluation of experiments with adaptive interim analyses. Biometrics. 1994;50:1029–1041. doi: 10.2307/2533441.
    1. European Medicines Agency. Guideline on the evaluation of medicinal products indicated for treatment of bacterial infections. Comm Med Prod Hum Use. 2010;2:1–26. CPMP/EWP/558/95 rev.
    1. Kergoat H, Tinjust D. Neuroretinal function during systemic hyperoxia and hypercapnia in humans. Optom Vis Sci Off Publ Am Acad Optom. 2004;81:214–220.
    1. Ashkanian M, Gjedde A, Mouridsen K, Vafaee M, Hansen KV, Østergaard L, Andersen G. Carbogen inhalation increases oxygen transport to hypoperfused brain tissue in patients with occlusive carotid artery disease: increased oxygen transport to hypoperfused brain. Brain Res. 2009;1304:90–95.
    1. Voipio J, Tallgren P, Heinonen E, Vanhatalo S, Kaila K. Millivolt-scale DC shifts in the human scalp EEG: evidence for a nonneuronal generator. J Neurophysiol. 2003;89:2208–2214.
    1. Directive 2001/20/EC of the European parliament and of the council on the approximation of the laws, regulations and administrative provisions of the member states relating to the implementation of good clinical practice in the conduct of clinical trials on medical products for human use. 2001. .
    1. Vesterinen HV, Egan K, Deister A, Schlattmann P, Macleod MR, Dirnagl U. Systematic survey of the design, statistical analysis, and reporting of studies published in the 2008 volume of the journal of cerebral blood flow and metabolism. J Cereb Blood Flow Metab. 2011;31:1064–1072. doi: 10.1038/jcbfm.2010.217.
    1. Macleod MR, Fisher M, O’Collins V, Sena ES, Dirnagl U, Bath PMW, Buchan A, van der Worp HB, Traystman RJ, Minematsu K, Donnan GA, Howells DW. Reprint. Good laboratory practice: preventing introduction of bias at the bench. J Cereb Blood Flow Metab. 2008;29:221–223.

Source: PubMed

3
Sottoscrivi