Radioimmunotherapy of prostate cancer targeting human kallikrein-related peptidase 2

O Vilhelmsson Timmermand, E Larsson, D Ulmert, T A Tran, Se Strand, O Vilhelmsson Timmermand, E Larsson, D Ulmert, T A Tran, Se Strand

Abstract

Background: Prostate cancer ranks as the second most lethal malignancy in the Western world. Previous targeting of prostate-specific antigen and human kallikrein-related peptidase 2, two related enzymes abundantly expressed in prostatic malignancies, with radioimmunoconjugates intended for diagnostic purposes, have proven successful in rodent prostate cancer (PCa) models. In this study, we investigated the uptake and therapeutic efficacy of (177)Lu-m11B6, a human kallikrein-related peptidase 2 (hK2)-targeting radioimmunoconjugate in a pre-clinical setting.

Methods: The murine 11B6 antibody, m11B6, with high affinity for hK2, was labeled with (177)Lu. Therapy planning was done from a biokinetic study in LNCaP xenografts, and therapeutic activities of (177)Lu-m11B6 were administered to groups of mice. Body weight and general conditions of the mice were followed over a period of 120 days.

Results: The tumor uptake in LNCaP xenografts was 30 ± 8.2 % injected activity per gram 1 week post-injection. In vivo targeting was hK2-specific as verified by a 2.5-fold decrease in tumor uptake in pre-dosed xenografts or by a fourfold lower tumor accumulation in hK2-negative DU 145 xenografts. Therapy showed a dose-dependent efficacy in LNCaP xenografts treated with (177)Lu-m11B6. No therapeutic effect was seen in the control groups. The median survival for the lowest given activity of (177)Lu-m11B6 was 88 days compared to that of 38 days in mice given labeled non-specific IgG. For the higher administrated activities, total tumor regression was seen with minimal normal organ toxicity.

Conclusions: We have proven the possibility of radioimmunotherapy targeting hK2 in subcutaneous prostate cancer xenografts. (177)Lu-m11B6 exhibited high therapeutic efficacy, with low observed toxicity. Additionally, an evaluation of the concept of pre-therapy planning using a dosimetry model was included in this radioimmunotherapy study.

Keywords: 11B6; 177Lu; 177Lu-m11B6; Dosimetry; Human kallikrein-related peptidase 2; Prostate cancer; Radioimmunotherapy; hK2.

Figures

Fig. 1
Fig. 1
SPECT/CT imaging with two projections per mouse, frontal and sagittal view, arrows indicating xenografts. a From left to right, a mouse with LNCaP xenograft (right side) imaged at 24, 48, 72, and 1 week p.i. of 8 MBq 177Lu-m11B6. b Mouse with LNCaP xenograft (right side) imaged at 48 and 72 h p.i. of 8 MBq 177Lu-m11B6 and m11B6. 1 mg cold m11B6 was injected 24 h prior to injection with 177Lu-m11B6
Fig. 2
Fig. 2
SPECT quantification and biodistribution of 177Lu-m11B6. a SPECT quantification of 7.9 ± 0.69 MBq, 30 μg 177Lu-m11B6 in s.c. LNCaP-xenografted NMRI nude mice at 24, 48, 72, and 168 h. b. Biodistribution of 7.9 ± 0.69 MBq, 30 μg 177Lu-m11B6 in s.c. LNCaP at 72 and 168 h p.i. c In vivo specificity, 7.9 ± 0.69 MBq q, 30 μg 177Lu-m11B6 in s.c. LNCaP- and DU 145-xenografted NMRI nude mice at 72 h with a group of pre-dosed mice (1 mg cold m11B6 24 h pre-injection of labeled antibody)
Fig. 3
Fig. 3
Representation of LNCaP tumor volumes measured with caliper over 120 days after injection of a 10.1.2 MBq of 177Lu-m11B6, b 19.1.4 MBq 177Lu-m11B6, c 36 ± 0.68 MBq 177Lu-m11B6, d NaCl, e non-specific IgG 18 ± 1.3 MBq and f 30 μg m11B6
Fig. 4
Fig. 4
Percent change in xenograft volume over time. a Percent change over time 177Lu-m11B6 and controls. b. Zoomed in, the change during the first 60 days of 177Lu-m11B6 treatment. c Tumor growth development in percent for DU 145 xenografts for mice given 24 ± 0.45 MBq 177Lu-m11B6 and NaCl, respectively
Fig. 5
Fig. 5
Survival and weight. a Kaplan-Meier. Survival over time, median survival was 45 days for NaCl, 38 days for non-specific IgG, 35 days for 30 μg m11B6, and 88 days for 10 MBq of 177Lu-m11B6. For the two remaining groups there is no median survival available since only one mouse where sacrificed within 120 days due to too large tumor volume. b Animal weight after treatment with 177Lu-m11B6, no change is seen. c Animal weight in control groups, a drop in the weights of some animals were seen, especially in the group given non-specific IgG

References

    1. Siegel R, Miller K, Jemal A. Cancer statistics, 2015. Ca-Cancer J Clin. 2015;65(1):5–29. doi: 10.3322/caac.21254.
    1. Harris WP, Mostaghel EA, Nelson PS, Montgomery B. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol. 2009;6(2):76–85. doi: 10.1038/ncpuro1296.
    1. Heidenreich A, Pfister D, Merseburger A, Bartsch G. German working group on castration-resistant prostate cancer: where we stand in 2013 and what urologists should know. Eur Urol. 2013;64(2):260–5. doi: 10.1016/j.eururo.2013.05.021.
    1. Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat rev Cancer. 2001;1(1):34–45. doi: 10.1038/35094009.
    1. El-Amm J, Aragon-Ching JB. The changing landscape in the treatment of metastatic castration-resistant prostate cancer. Ther Adv Med Oncol. 2013;5(1):25–40. doi: 10.1177/1758834012458137.
    1. Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. New Engl J Med. 2013;369(3):213–23. doi: 10.1056/NEJMoa1213755.
    1. Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19(18):5182–91. doi: 10.1158/1078-0432.CCR-13-0231.
    1. Sgouros G. Dosimetry of internal emitters. J Nucl Med. 2005;46(1):18S-27S.
    1. Pool SE, Krenning EP, Koning GA, van Eijck CH, Teunissen JJ, Kam B, et al. Preclinical and clinical studies of peptide receptor radionuclide therapy. Semin Nucl Med. 2010;40(3):209–18. doi: 10.1053/j.semnuclmed.2009.12.001.
    1. Jain M, Gupta S, Kaur S, Ponnusamy MP, Batra SK. Emerging trends for radioimmunotherapy in solid tumors. Cancer Biother Radio. 2013;28(9):639–50.
    1. Kraeber-Bodéré F, Bodet-Milin C, Rousseau C, Chouin N, Haddad F, Davodeau F, et al. New advances in Radioimmunotherapy for the treatment of cancers. In: Nima R, et al., editors. Cancer immunology: bench to bedside immunotherapy of cancers. Berlin Heidelberg: Springer; 2015. p. 449.
    1. Shaw JL, Diamandis EP. Distribution of 15 human kallikreins in tissues and biological fluids. Clin Chem. 2007;53:1423–1432. doi: 10.1373/clinchem.2007.088104.
    1. Darson MF, Pacelli A, Roche P, Rittenhouse HG, Wolfert RL, Saeid MS, Young CY, Klee GG, Tindall DJ, Bostwick DG. Human glandular kallikrein 2 expression in prostate adenocarcinoma and lymph node metastases. Urol. 1999;53:939–944. doi: 10.1016/S0090-4295(98)00637-2.
    1. Darson MF, Pacelli A, Roche P, Rittenhouse HG, Wolfert RL, Young CY, Klee GG, Tindall DJ, Bostwick DG. Human glandular kallikrein 2 (hK2) expression in prostatic intraepithelial neoplasia and adenocarcinoma: a novel prostate cancer marker. Urol. 1997;49:857–862. doi: 10.1016/S0090-4295(97)00108-8.
    1. Laitinen S, Martikainen PM, Tammela TL, Visakorpi T. Cellular changes in prostate cancer cells induced by intermittent androgen suppression. Eur Urol. 2007;52(3):725–32. doi: 10.1016/j.eururo.2006.11.043.
    1. Hobisch A, Culig Z, Radmayr C, Bartsch G, Klocker H, Hittmair A. Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res. 1995;55(14):3068–72.
    1. Vilhelmsson Timmermand O, Ulmert D, Evans-Axelsson S, Pettersson K, Bjartell A, Lilja H, et al. Preclinical imaging of kallikrein-related peptidase 2 (hK2) in prostate cancer with a 111In-radiolabelled monoclonal antibody, 11B6. Eur J Nucl Med and Mol I Res. 2014;4(1):51.
    1. Vaisanen V, Eriksson S, Ivaska KK, Lilja H, Nurmi M, Pettersson K. Development of sensitive immunoassays for free and total human glandular kallikrein 2. Clin Chem. 2004;50:1607–1617. doi: 10.1373/clinchem.2004.035253.
    1. Kumar A, Goel AS, Hill TM, Mikolajczyk SD, Millar LS, Kuus-Reichel K, Saedi MS. Expression of human glandular kallikrein, hK2, in mammalian cells. Cancer Res. 1996;56(23):5397–402.
    1. Nuclear decay data in the MIRD format. National Nuclear Data Center, Brookhaven National Laboratory; 2014. , Accessed 28 July 2015.
    1. Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med. 1993;34(4):689–94.
    1. Segars WP, Tsui BM, Frey EC, Johnson GA, Berr SS. Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imaging Biol. 2004;6(3):149–59. doi: 10.1016/j.mibio.2004.03.002.
    1. Larsson E, Strand SE, Ljungberg M, Jönsson BA. Mouse S-factors based on Monte Carlo simulations in the anatomical realistic Moby phantom for internal dosimetry. Cancer Biother Radio. 2007;22(3):438–42. doi: 10.1089/cbr.2006.320.
    1. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry-standardization of nomenclature. J Nucl Med. 2009;50(3):477–84. doi: 10.2967/jnumed.108.056036.
    1. Larsson E, Ljungberg M, Martensson L, Nilsson R, Tennvall J, Strand SE, et al. Use of Monte Carlo simulations with a realistic rat phantom for examining the correlation between hematopoietic system response and red marrow absorbed dose in Brown Norway rats undergoing radionuclide therapy with (177)Lu- and (90)Y-BR96 mAbs. Med Phys. 2012;39(7):4434–43. doi: 10.1118/1.4730499.
    1. Tomayko MM. Reynolds CP Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemoth Pharm. 1989;24(3):148–54. doi: 10.1007/BF00300234.
    1. Euhus DM, Hudd C, LaRegina MC, Johnson FE. Tumor measurement in the nude mouse. J Surg Oncol. 1986;31(4):229–34. doi: 10.1002/jso.2930310402.
    1. Hatano K, Araki H, Sakai M, Kodama T, Tohyama N, Kawachi T. Current status of intensity-modulated radiation therapy (IMRT) Int J Clin Oncol. 2007;12(6):408–15. doi: 10.1007/s10147-007-0703-9.
    1. Song H, Sgouros G. Radioimmunotherapy of solid tumors: searching for the right target. Curr Drug Deliv. 2011;8(1):26–44. doi: 10.2174/156720111793663651.
    1. Lawrence MG, Lai J, Clements JA. Kallikreins on steroids: structure, function, and hormonal regulation of prostate-specific antigen and the extended kallikrein locus. Endocr Rev. 2010;31(4):407–46. doi: 10.1210/er.2009-0034.
    1. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A et al. Proteomics. Tissue-based map of the human proteome. Science. 2015; 347(6220) , Accessed 13 January 201634.
    1. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3(1):81–5.
    1. Baum RP, Kulkarni HR, Schuchardt C, Singh A, Wirtz M. Lutetium-177 PSMA radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med. 2016 Jan 21. Epub ahead of print
    1. Schmidt MM, Wittrup KD. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther. 2009;8(10):2861–71. doi: 10.1158/1535-7163.MCT-09-0195.
    1. Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res. 1992;52(19):5144–53.
    1. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 2001;61(12):4750–541.
    1. Pak Y, Zhang Y, Pastan I, Lee B. Antigen shedding may improve efficiencies for delivery of antibody-based anticancer agents in solid tumors. Cancer Res. 2012;72(13):3143–52. doi: 10.1158/0008-5472.CAN-11-3925.
    1. Kollara A, Diamandis EP, Brown TJ. Secretion of endogenous kallikreins 2 and 3 by androgen receptor-transfected PC-3 prostate cancer cells. J Steroid Biochem. 2003;84(5):493–502. doi: 10.1016/S0960-0760(03)00069-4.
    1. Stephan C, Jung K, Nakamura T, Yousef GM, Kristiansen G, Diamandis EP. Serum human glandular kallikrein 2 (hK2) for distinguishing stage and grade of prostate cancer. Int J Urol. 2006;13(3):238–43. doi: 10.1111/j.1442-2042.2006.01276.x.
    1. Steuber T, Vickers AJ, Serio AM, Vaisanen V, Haese A, Pettersson K, et al. Comparison of free and total forms of serum human kallikrein 2 and prostate-specific antigen for prediction of locally advanced and recurrent prostate cancer. Clin Chem. 2007;53(2):233–40. doi: 10.1373/clinchem.2006.074963.
    1. Spratt DE, Evans MJ, Davis BJ, Doran MG, Lee MX, Shah N, et al. Androgen receptor upregulation mediates radioresistance after ionizing radiation. Cancer Res. 2015;75(22):4688–96. doi: 10.1158/0008-5472.CAN-15-0892.

Source: PubMed

3
Sottoscrivi