The Role of Next-Generation Sequencing in Precision Medicine: A Review of Outcomes in Oncology

Margaret Morash, Hannah Mitchell, Himisha Beltran, Olivier Elemento, Jyotishman Pathak, Margaret Morash, Hannah Mitchell, Himisha Beltran, Olivier Elemento, Jyotishman Pathak

Abstract

Precision medicine seeks to use genomic data to help provide the right treatment to the right patient at the right time. Next-generation sequencing technology allows for the rapid and accurate sequencing of many genes at once. This technology is becoming more common in oncology, though the clinical benefit of incorporating it into precision medicine strategies remains under significant debate. In this manuscript, we discuss the early findings of the impact of next-generation sequencing on cancer patient outcomes. We investigate why not all patients with genomic variants linked to a specific therapy receive that therapy and describe current barriers. Finally, we explore the current state of health insurance coverage for individual genome sequencing and targeted therapies for cancer. Based on our analysis, we recommend increased transparency around the determination of "actionable mutations" and a heightened focus on investigating the variations in health insurance coverage across patients receiving sequencing-matched therapies.

Keywords: health insurance coverage; next generation sequencing; oncology; patient outcomes; precision medicine.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Outline of Precision Medicine in Oncology. Cancer patients have genomic, clinical, and insurance information that is evaluated by the physician, along with patient preferences, to design a potential treatment plan via shared-decision making. The patient’s outcomes are evaluated both to update their individual treatment plan as well as to inform future healthcare policy making. Once enough evidence amasses to show the clear benefit of a certain treatment, changes in healthcare policy affect (1) the clinical guidelines physicians consult in designing care, (2) the types of treatments that health insurance policies cover, and (3) the cost of treatment to the patient.

References

    1. Bode A.M., Dong Z. Precision oncology-the future of personalized cancer medicine? NPJ Precis. Oncol. 2017;1:2. doi: 10.1038/s41698-017-0010-5.
    1. Collins F. Precision Oncology: Gene Changes Predict Immunotherapy Response|NIH Director’s Blog. [(accessed on 10 November 2017)]; Available online:
    1. Schwartzberg L., Kim E.S., Liu D., Schrag D. Precision oncology: Who, how, what, when, and when not? Am. Soc. Clin. Oncol. Educ. Book. 2017;37:160–169. doi: 10.14694/EDBK_174176.
    1. AACR Project GENIE Consortium AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017;7:818–831. doi: 10.1158/-17-0151.
    1. Tsimberidou A.-M., Iskander N.G., Hong D.S., Wheler J.J., Falchook G.S., Fu S., Piha-Paul S., Naing A., Janku F., Luthra R., et al. Personalized medicine in a phase I clinical trials program: The MD Anderson Cancer Center initiative. Clin. Cancer Res. 2012;18:6373–6383. doi: 10.1158/1078-0432.CCR-12-1627.
    1. Radovich M., Kiel P.J., Nance S.M., Niland E.E., Parsley M.E., Ferguson M.E., Jiang G., Ammakkanavar N.R., Einhorn L.H., Cheng L., et al. Clinical benefit of a precision medicine based approach for guiding treatment of refractory cancers. Oncotarget. 2016;7:56491–56500. doi: 10.18632/oncotarget.10606.
    1. Schwaederle M., Parker B.A., Schwab R.B., Daniels G.A., Piccioni D.E., Kesari S., Helsten T.L., Bazhenova L.A., Romero J., Fanta P.T., et al. Precision oncology: The UC San Diego Moores Cancer Center PREDICT experience. Mol. Cancer Ther. 2016;15:743–752. doi: 10.1158/1535-7163.MCT-15-0795.
    1. Kris M.G., Johnson B.E., Berry L.D., Kwiatkowski D.J., Iafrate A.J., Wistuba I.I., Varella-Garcia M., Franklin W.A., Aronson S.L., Su P.-F., et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014;311:1998–2006. doi: 10.1001/jama.2014.3741.
    1. Aisner D. Effect of expanded genomic testing in lung adenocarcinoma (LUCA) on survival benefit: The Lung Cancer Mutation Consortium II (LCMC II) experience. J. Clin. Oncol. 2016;34:11510. doi: 10.1200/JCO.2016.34.15_suppl.11510.
    1. Stockley T.L., Oza A.M., Berman H.K., Leighl N.B., Knox J.J., Shepherd F.A., Chen E.X., Krzyzanowska M.K., Dhani N., Joshua A.M., et al. Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: The Princess Margaret IMPACT/COMPACT trial. Genome Med. 2016;8:109. doi: 10.1186/s13073-016-0364-2.
    1. Le Tourneau C., Delord J.-P., Gonçalves A., Gavoille C., Dubot C., Isambert N., Campone M., Trédan O., Massiani M.-A., Mauborgne C., et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): A multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 2015;16:1324–1334. doi: 10.1016/S1470-2045(15)00188-6.
    1. Le D.T., Durham J.N., Smith K.N., Wang H., Bartlett B.R., Aulakh L.K., Lu S., Kemberling H., Wilt C., Luber B.S., et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–413. doi: 10.1126/science.aan6733.
    1. U.S. Food and Drug Administration FDA Grants Accelerated Approval to Pembrolizumab for First Tissue/Site Agnostic Indication. [(accessed on 12 November 2017)]; Available online: .
    1. Drilon A., Nagasubramanian R., Blake J.F., Ku N., Tuch B.B., Ebata K., Smith S., Lauriault V., Kolakowski G.R., Brandhuber B.J., et al. A Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to Prior TRK Kinase Inhibition in Patients with TRK Fusion-Positive Solid Tumors. Cancer Discov. 2017;7:963–972. doi: 10.1158/-17-0507.
    1. West H.J. No solid evidence, only hollow argument for universal tumor sequencing: Show me the data. JAMA Oncol. 2016;2:717–718. doi: 10.1001/jamaoncol.2016.0075.
    1. Moscow J.A., Fojo T., Schilsky R.L. The evidence framework for precision cancer medicine. Nat. Rev. Clin. Oncol. 2018;15:183–192. doi: 10.1038/nrclinonc.2017.186.
    1. Fojo T. Precision oncology: A strategy we were not ready to deploy. Semin. Oncol. 2016;43:9–12. doi: 10.1053/j.seminoncol.2016.01.005.
    1. Cancer Genome Atlas Network Genomic classification of cutaneous melanoma. Cell. 2015;161:1681–1696. doi: 10.1016/j.cell.2015.05.044.
    1. Cancer Genome Atlas Research Network The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–1025. doi: 10.1016/j.cell.2015.10.025.
    1. Sohal D.P.S., Rini B.I., Khorana A.A., Dreicer R., Abraham J., Procop G.W., Saunthararajah Y., Pennell N.A., Stevenson J.P., Pelley R., et al. Prospective clinical study of precision oncology in solid tumors. J. Natl. Cancer. Inst. 2015;108 doi: 10.1093/jnci/djv332.
    1. Meric-Bernstam F., Brusco L., Shaw K., Horombe C., Kopetz S., Davies M.A., Routbort M., Piha-Paul S.A., Janku F., Ueno N., et al. Feasibility of Large-Scale Genomic Testing to Facilitate Enrollment onto Genomically Matched Clinical Trials. J. Clin. Oncol. 2015;33:2753–2762. doi: 10.1200/JCO.2014.60.4165.
    1. André F., Bachelot T., Commo F., Campone M., Arnedos M., Dieras V., Lacroix-Triki M., Lacroix L., Cohen P., Gentien D., et al. Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: A multicentre, prospective trial (SAFIR01/UNICANCER) Lancet Oncol. 2014;15:267–274. doi: 10.1016/S1470-2045(13)70611-9.
    1. Beltran H., Eng K., Mosquera J.M., Sigaras A., Romanel A., Rennert H., Kossai M., Pauli C., Faltas B., Fontugne J., et al. Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response. JAMA Oncol. 2015;1:466–474. doi: 10.1001/jamaoncol.2015.1313.
    1. Bryce A.H., Egan J.B., Borad M.J., Stewart A.K., Nowakowski G.S., Chanan-Khan A., Patnaik M.M., Ansell S.M., Banck M.S., Robinson S.I., et al. Experience with precision genomics and tumor board, indicates frequent target identification, but barriers to delivery. Oncotarget. 2017;8:27145–27154. doi: 10.18632/oncotarget.16057.
    1. Gray S.W., Hicks-Courant K., Cronin A., Rollins B.J., Weeks J.C. Physicians’ attitudes about multiplex tumor genomic testing. J. Clin. Oncol. 2014;32:1317–1323. doi: 10.1200/JCO.2013.52.4298.
    1. Bielinski S.J., Olson J.E., Pathak J., Weinshilboum R.M., Wang L., Lyke K.J., Ryu E., Targonski P.V., Van Norstrand M.D., Hathcock M.A., et al. Preemptive genotyping for personalized medicine: Design of the right drug, right dose, right time-using genomic data to individualize treatment protocol. Mayo Clin. Proc. 2014;89:25–33. doi: 10.1016/j.mayocp.2013.10.021.
    1. Kaiwar C., McAllister T.M., Lazaridis K.N., Klee E.W. Preemptive sequencing in the genomic medicine era. Expert Rev. Precis. Med. Drug Dev. 2017;2:91–98. doi: 10.1080/23808993.2017.1322898.
    1. Letai A. Functional precision cancer medicine-moving beyond pure genomics. Nat. Med. 2017;23:1028–1035. doi: 10.1038/nm.4389.
    1. NCI-MATCH/EAY131. [(accessed on 3 July 2018)]; Available online: .
    1. Empire Blue Cross Blue Shield In Vitro Companion Diagnostic Devices. [(accessed on 13 November 2017)]; Available online: .
    1. Brown T.D., Tameishi M., Liu X., Scanlan J., Beatty J.D., Drescher C. Analysis of reimbursement (R) for next generation sequencing (NGS) on patients’ tumors in the context of a personalized medicine program. J. Clin. Oncol. 2017;35:6506. doi: 10.1200/JCO.2017.35.15_suppl.6506.
    1. Eisenberg R., Varmus H. Insurance for broad genomic tests in oncology. Science. 2017;358:1133–1134. doi: 10.1126/science.aao6708.
    1. National Cancer Institute Off-Label Drug Use in Cancer Treatment. [(accessed on 6 November 2017)]; Available online: .
    1. Saiyed M.M., Ong P.S., Chew L. Off-label drug use in oncology: A systematic review of literature. J. Clin. Pharm. Ther. 2017;42:251–258. doi: 10.1111/jcpt.12507.
    1. Centers for Medicare and Medicaid Services Compendia. [(accessed on 12 November 2017)]; Available online: .
    1. Yandell K. Going Off-Label. [(accessed on 8 November 2017)]; Available online: .
    1. U.S. Food and Drug Administration FDA Announces Approval, CMS Proposes Coverage of First Breakthrough-Designated Test to Detect Extensive Number of Cancer Biomarkers. [(accessed on 1 December 2017)]; Available online: .
    1. National Cancer Institute NCI-MATCH Trial (Molecular Analysis for Therapy Choice) [(accessed on 10 November 2017)]; Available online: .
    1. American Society of Clinical Oncology About the TAPUR Study. [(accessed on 9 November 2017)]; Available online:
    1. Global Alliance for Genomics and Health Enabling Genomic Data Sharing for the Benefit of Human Health. [(accessed on 11 April 2018)]; Available online:
    1. Prasad V. Why the US Centers for Medicare and Medicaid Services (CMS) should have required a randomized trial of Foundation Medicine (F1CDx) before paying for it. Ann. Oncol. 2018;29:298–300. doi: 10.1093/annonc/mdx786.
    1. Krop I.E., Jegede O., Grilley-Olson J.E., Lauring J.D., Hamilton S.R., Zwiebel J.A., Li S., Rubinstein L., Doyle A., Patton D.R., et al. Results from molecular analysis for therapy choice (MATCH) arm I: Taselisib for PIK3CA-mutated tumors. J. Clin. Oncol. 2018 doi: 10.1200/JCO.2018.36.15_suppl.101.
    1. Jhaveri K.L., Makker V., Wang X.V., Chen A.P., Flaherty K., Conley B.A., O’Dwyer P.J., Williams P.M., Hamilton S.R., Harris L., et al. Ado-trastuzumab emtansine (T-DM1) in patients (pts) with HER2 amplified (amp) tumors excluding breast and gastric/gastro-esophageal junction (GEJ) adenocarcinomas: Results from the National Cancer Institute (NCI) Molecular Analysis for Therapy Choice (MATCH) trial. J. Clin. Oncol. 2018 doi: 10.1200/JCO.2018.36.15_suppl.100.
    1. Chae Y.K., Vaklavas C., Cheng H.H., Hong F., Harris L., Mitchell E.P., Zwiebel J.A., McShane L., Gray R.J., Li S., et al. Molecular analysis for therapy choice (MATCH) arm W: Phase II study of AZD4547 in patients with tumors with aberrations in the FGFR pathway. J. Clin. Oncol. 2018 doi: 10.1200/JCO.2018.36.15_suppl.2503.

Source: PubMed

3
Sottoscrivi