Obesity-Linked Gut Microbiome Dysbiosis Associated with Derangements in Gut Permeability and Intestinal Cellular Homeostasis Independent of Diet

Ravinder Nagpal, Tiffany M Newman, Shaohua Wang, Shalini Jain, James F Lovato, Hariom Yadav, Ravinder Nagpal, Tiffany M Newman, Shaohua Wang, Shalini Jain, James F Lovato, Hariom Yadav

Abstract

This study aimed to determine the association between non-high-fat diet-induced obesity- (non-DIO-) associated gut microbiome dysbiosis with gut abnormalities like cellular turnover of intestinal cells, tight junctions, and mucin formation that can impact gut permeability. We used leptin-deficient (Lepob/ob) mice in comparison to C57BL/6J control mice, which are fed on identical diets, and performed comparative and correlative analyses of gut microbiome composition, gut permeability, intestinal structural changes, tight junction-mucin formation, cellular turnover, and stemness genes. We found that obesity impacted cellular turnover of the intestine with increased cell death and cell survival/proliferation gene expression with enhanced stemness, which are associated with increased intestinal permeability, changes in villi/crypt length, and decreased expression of tight junctions and mucus synthesis genes along with dysbiotic gut microbiome signature. Obesity-induced gut microbiome dysbiosis is also associated with abnormal intestinal organoid formation characterized with decreased budding and higher stemness. Results suggest that non-DIO-associated gut microbiome dysbiosis is associated with changes in the intestinal cell death versus cell proliferation homeostasis and functions to control tight junctions and mucous synthesis-regulating gut permeability.

Figures

Figure 1
Figure 1
Gut permeability and intestinal structural changes are associated with mucin-tight junction formation independent of dietary differences. (a) Gut permeability (diffusion of FITC-dextran; 4 KDa from gut to blood) increased obese mice compared to B6 control. (b) Expression of mucin (Muc2 and Muc6) and tight junction- (occludin-, Zo1-, and Jam-) forming genes significantly decreased in Lepob/ob intestine than B6 mice. (c, d) Western blot analyses of Zo1, occludin, and tubulin in intestinal tissues. (e–g) Hematoxylin and eosin (20x) staining for the small intestine (ileum) (e), decreased length of villi (f), and increased crypt (g) in obese mice. Values presented here are average ± SEM. p values are defined as ∗ < 0.05, ∗∗ < 0.01, and ∗∗∗ < 0.001.
Figure 2
Figure 2
Non-diet-induced obesity developed stable changes in cells to form abnormal intestinal structures and influenced intestinal cellular homeostasis. (a–c) Intestinal organoids (a) and their budding potential (b, c) decreased in Lepob/ob-derived organoids versus B6 mice. (d–i) mRNA expression of cell death (Bad, Bax, and Bcl2), cell proliferation (Ccnd1, Cdk6, and Sox4), and stem cell- (Lgr5-, Olfm4-, and Bmi1-) specific genes in obese and B6 intestines. Values presented here are average ± SEM/SD. p values are defined as ∗ < 0.05, ∗∗ < 0.01, and ∗∗∗ < 0.001.
Figure 3
Figure 3
Lepob/ob mice exhibit significant gut microbiome dysbiosis compared to C57BL/6J (B6) mice fed with identical diet. (a) PCoA analysis shows differential clustering of the microbiome signature in Lepob/ob and B6 mice. (b, c) Microbial phylum abundance and Firmicutes : Bacteroidetes (F : B) ratio in Lepob/ob and B6 mice. (d–f) Significantly differing microbial families (d) and genera (e) abundances as well as fold change (percent) between Lepob/ob and B6 mice. Values presented here are average ± SEM/SD.
Figure 4
Figure 4
Relationship of metabolic functions, intestinal morphology, and functions with gut microbiome dysbiosis, independent of dietary differences. Spearman correlation analysis to establish the association between metabolic measures (body weight, blood glucose, AUC-GTT, and AUC-ITT), gut permeability changes, intestinal structural changes, and gene expression changes and the gut microbiome signature between Lepob/ob and B6 mice. Values presented here are average of 3–8 replicates. p values are defined as ∗ < 0.05 and ∗∗ < 0.01.

References

    1. Friedrich M. J. Global obesity epidemic worsening. Journal of the American Medical Association. 2017;318(7):p. 603. doi: 10.1001/jama.2017.10693.
    1. Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–1131. doi: 10.1038/nature05414.
    1. Hildebrandt M. A., Hoffmann C., Sherrill–Mix S. A., et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137(5):1716–1724.e2. doi: 10.1053/j.gastro.2009.08.042.
    1. Tarantino G. Gut microbiome, obesity-related comorbidities, and low-grade chronic inflammation. The Journal of Clinical Endocrinology & Metabolism. 2014;99(7):2343–2346. doi: 10.1210/jc.2014-2074.
    1. Cani P. D., Amar J., Iglesias M. A., et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–1772. doi: 10.2337/db06-1491.
    1. Yadav H., Devalaraja S., Chung S. T., Rane S. G. TGF-β1/Smad3 pathway targets PP2A-AMPK-FoxO1 signaling to regulate hepatic gluconeogenesis. Journal of Biological Chemistry. 2017;292(8):3420–3432. doi: 10.1074/jbc.M116.764910.
    1. Yadav H., Lee J. H., Lloyd J., Walter P., Rane S. G. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. Journal of Biological Chemistry. 2013;288(35):25088–25097. doi: 10.1074/jbc.M113.452516.
    1. Yadav H., Quijano C., Kamaraju A. K., et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metabolism. 2011;14(1):67–79. doi: 10.1016/j.cmet.2011.04.013.
    1. Fouts D. E., Torralba M., Nelson K. E., Brenner D. A., Schnabl B. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. Journal of Hepatology. 2012;56(6):1283–1292. doi: 10.1016/j.jhep.2012.01.019.
    1. Itzkovitz S., Lyubimova A., Blat I. C., et al. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nature Cell Biology. 2012;14(1):106–114. doi: 10.1038/ncb2384.
    1. Caporaso J. G., Kuczynski J., Stombaugh J., et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 2010;7(5):335–336. doi: 10.1038/nmeth.f.303.
    1. Caporaso J. G., Lauber C. L., Walters W. A., et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal. 2012;6(8):1621–1624. doi: 10.1038/ismej.2012.8.
    1. Caporaso J. G., Bittinger K., Bushman F. D., DeSantis T. Z., Andersen G. L., Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26(2):266–267. doi: 10.1093/bioinformatics/btp636.
    1. Nagpal R., Shively C. A., Appt S. A., et al. Gut microbiome composition in non-human primates consuming a western or Mediterranean diet. Frontiers in Nutrition. 2018;5:p. 28. doi: 10.3389/fnut.2018.00028.
    1. Beyaz S., Mana M. D., Roper J., et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531(7592):53–58. doi: 10.1038/nature17173.
    1. Mushref M. A., Srinivasan S. Effect of high fat-diet and obesity on gastrointestinal motility. Annals of Translational Medicine. 2013;1
    1. Kameyama K., Itoh K. Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes and Environments. 2014;29(4):427–430. doi: 10.1264/jsme2.ME14054.
    1. Plovier H., Everard A., Druart C., et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine. 2017;23(1):107–113. doi: 10.1038/nm.4236.
    1. Shin N. R., Lee J. C., Lee H. Y., et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–735. doi: 10.1136/gutjnl-2012-303839.
    1. Nagpal R., Yadav H. Bacterial translocation from the gut to the distant organs: an overview. Annals of Nutrition & Metabolism. 2017;71(1):11–16. doi: 10.1159/000479918.
    1. Nagpal R., Kumar M., Yadav A. K., et al. Gut microbiota in health and disease: an overview focused on metabolic inflammation. Beneficial Microbes. 2016;7(2):181–194. doi: 10.3920/bm2015.0062.
    1. Guo X., Roberts M. R., Becker S. M., et al. Leptin signaling in intestinal epithelium mediates resistance to enteric infection by Entamoeba histolytica . Mucosal Immunology. 2011;4(3):294–303. doi: 10.1038/mi.2010.76.
    1. Rajala M. W., Patterson C. M., Opp J. S., Foltin S. K., Young V. B., Myers M. G. Leptin acts independently of food intake to modulate gut microbial composition in male mice. Endocrinology. 2014;155(3):748–757. doi: 10.1210/en.2013-1085.
    1. Chen J., Li J., Lim F. C., et al. Maintenance of naïve CD8 T cells in nonagenarians by leptin, IGFBP3 and T3. Mechanisms of Ageing and Development. 2010;131(1):29–37. doi: 10.1016/j.mad.2009.11.003.
    1. Ajuwon K. M., Kuske J. L., Ragland D., et al. The regulation of IGF-1 by leptin in the pig is tissue specific and independent of changes in growth hormone. The Journal of Nutritional Biochemistry. 2003;14(9):522–530. doi: 10.1016/S0955-2863(03)00103-7.
    1. D’Addio F., la Rosa S., Maestroni A., et al. Circulating IGF-I and IGFBP3 levels control human colonic stem cell function and are disrupted in diabetic enteropathy. Cell Stem Cell. 2015;17(4):486–498. doi: 10.1016/j.stem.2015.07.010.

Source: PubMed

3
Sottoscrivi