Prismatic Adaptation Induces Plastic Changes onto Spatial and Temporal Domains in Near and Far Space

Ivan Patané, Alessandro Farnè, Francesca Frassinetti, Ivan Patané, Alessandro Farnè, Francesca Frassinetti

Abstract

A large literature has documented interactions between space and time suggesting that the two experiential domains may share a common format in a generalized magnitude system (ATOM theory). To further explore this hypothesis, here we measured the extent to which time and space are sensitive to the same sensorimotor plasticity processes, as induced by classical prismatic adaptation procedures (PA). We also exanimated whether spatial-attention shifts on time and space processing, produced through PA, extend to stimuli presented beyond the immediate near space. Results indicated that PA affected both temporal and spatial representations not only in the near space (i.e., the region within which the adaptation occurred), but also in the far space. In addition, both rightward and leftward PA directions caused opposite and symmetrical modulations on time processing, whereas only leftward PA biased space processing rightward. We discuss these findings within the ATOM framework and models that account for PA effects on space and time processing. We propose that the differential and asymmetrical effects following PA may suggest that temporal and spatial representations are not perfectly aligned.

Figures

Figure 1
Figure 1
Graphical representation of sequence of events in each trial for the two tasks. (a) Landmark task. Following 750 ms presentation of a blank, pretransected lines were presented for 2000 ms before reappearance of the blank on the screen until the subject responded. Lines were pretransected at 1 of 11 locations ranging symmetrically from −0.5° to +0.5° of visual angle (distance between transector locations = 0.1°) and including veridical center. After the participant's response (the transector is closer to the “right” or to the “left”), a black-and-white patterned mask was presented at random duration (range 500–1500 ms) before the next trial was presented. (b) Time bisection task. Following 750 ms presentation of a blank, pretransected lines were presented before reappearance of the blank until the subject responded. Lines were pretransected at veridical center and had 1 of 11 different duration ranging from 1000 to 3000 ms at 200 ms intervals. After the participant's response (the duration of the line is “short” or “long”), a black-and-white patterned mask was presented for a random duration (range 500–1500 ms) before the next trial.
Figure 2
Figure 2
Point of subjective equality judgments (PSE) as a function of prism group (LPA and RPA) and session before (dark gray) and after PA (light gray). Landmark task (a): the line transector is judged (in visual angle) as nearer to the left (negative values) or to the right (positive values). After LPA the line transector is judged as nearer to the right compared to before PA (positive values). Time bisection task (b): interval duration (in millisecond) is classified as short (2000 ms). After LPA the time interval is classified as longer compared to before, whereas after RPA the time interval is classified as shorter compared to before PA. Bars represent the average point of subjective equality for spatial and temporal judgments, respectively, ± standard error (SEM). p < .05.
Figure 3
Figure 3
Theoretical model of the plastic prismatic adaptation effects on spatial representation of time processing. (a) The horizontal black line represents a putative duration to be bisected. The central vertical marker represents the real midpoint of the temporal duration. The little vertical lines represent time beats indicating the velocity of time flow passage: the greater the distance between the lines, the slower the passage of time flow. (b) The horizontal dark gray line represents time duration perceived by participants before PA. The central vertical marker represents the temporal bisection judgment of participants before PA. The real time duration and the perceived duration by participants are aligned: the passage of time flow of the perceived duration has the same velocity of the real duration. (c) Leftward shift of spatial attention following RPA induces an underestimation of time. The horizontal dashed black arrow represents the leftward shift of spatial attention induced by RPA. The horizontal light gray line represents the time duration perceived by participants after RPA. The central vertical marker represents the temporal bisection judgment of participants after RPA. The real time interval and the perceived interval are not aligned because of the rightward bias of spatial attention: the passage of time flow of the perceived duration beats more slowly than the real duration. (d) Rightward shift of spatial attention following LPA induces an overestimation of time. The horizontal dashed black arrow represents the leftward shift of spatial attention induced by LPA. The horizontal light gray line represents the time duration perceived by participants after LPA. The central vertical marker represents the temporal bisection judgment of participants after LPA. The real time interval and the perceived interval are not aligned because of the rightward bias of spatial attention: the passage of time flow of the perceived duration beats more quickly than the real duration.

References

    1. Walsh V. A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences. 2003;7(11):483–488. doi: 10.1016/j.tics.2003.09.002.
    1. Bueti D., Walsh V. The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009;364(1525):1831–1840. doi: 10.1098/rstb.2009.0028.
    1. Ishihara M., Keller P. E., Rossetti Y., Prinz W. Horizontal spatial representations of time: evidence for the STEARC effect. Cortex. 2008;44(4):454–461. doi: 10.1016/j.cortex.2007.08.010.
    1. Arzy S., Adi-Japha E., Blanke O. The mental time line: an analogue of the mental number line in the mapping of life events. Consciousness and Cognition. 2009;18(3):781–785. doi: 10.1016/j.concog.2009.05.007.
    1. Santiago J., Lupáñez J., Pérez E., Funes M. J. Time (also) flies from left to right. Psychonomic Bulletin & Review. 2007;14(3):512–516. doi: 10.3758/bf03194099.
    1. Torralbo A., Santiago J., Lupiáñez J. Flexible conceptual projection of time onto spatial frames of reference. Cognitive Science. 2006;30(4):745–757. doi: 10.1207/s15516709cog0000_67.
    1. Vallesi A., Weisblatt Y., Semenza C., Shaki S. Cultural modulations of space-time compatibility effects. Psychonomic Bulletin and Review. 2014;21(3):666–669. doi: 10.3758/s13423-013-0540-y.
    1. Oliveri M., Koch G., Salerno S., Torriero S., Gerfo E. L., Caltagirone C. Representation of time intervals in the right posterior parietal cortex: Implications for a mental time line. NeuroImage. 2009;46(4):1173–1179. doi: 10.1016/j.neuroimage.2009.03.042.
    1. Di Bono M. G., Casarotti M., Priftis K., Gava L., Umiltà C., Zorzi M. Priming the mental time line. Journal of Experimental Psychology: Human Perception and Performance. 2012;38(4):838–842. doi: 10.1037/a0028346.
    1. Vicario C. M., Pecoraro P., Turriziani P., Koch G., Caltagirone C., Oliveri M. Relativistic compression and expansion of experiential time in the left and right space. PLoS ONE. 2008;3(3) doi: 10.1371/journal.pone.0001716.e1716
    1. Frassinetti F., Magnani B., Oliveri M. Prismatic lenses shift time perception. Psychological Science. 2009;20(8):949–954. doi: 10.1111/j.1467-9280.2009.02390.x.
    1. Gaveau V., Prablanc C., Laurent D., Rossetti Y., Priot A.-E. Visuomotor adaptation needs a validation of prediction error by feedback error. Frontiers in Human Neuroscience. 2014;8, article 880 doi: 10.3389/fnhum.2014.00880.
    1. Redding G. M., Wallace B. Prism adaptation in alternately exposed hands. Attention, Perception, and Psychophysics. 2013;75(6):1168–1185. doi: 10.3758/s13414-013-0467-4.
    1. Bultitude J. H., Van der Stigchel S., Nijboer T. C. W. Prism adaptation alters spatial remapping in healthy individuals: evidence from double-step saccades. Cortex. 2013;49(3):759–770. doi: 10.1016/j.cortex.2012.01.008.
    1. Redding G. M., Rossetti Y., Wallace B. Applications of prism adaptation: a tutorial in theory and method. Neuroscience and Biobehavioral Reviews. 2005;29(3):431–444. doi: 10.1016/j.neubiorev.2004.12.004.
    1. Schintu S., Pisella L., Jacobs S., Salemme R., Reilly K. T., Farnè A. Prism adaptation in the healthy brain: the shift in line bisection judgments is long lasting and fluctuates. Neuropsychologia. 2014;53(1):165–170. doi: 10.1016/j.neuropsychologia.2013.11.013.
    1. Magnani B., Oliveri M., Renata Mangano G., Frassinetti F. The role of posterior parietal cortex in spatial representation of time: a TMS study. Behavioural Neurology. 2010;23(4):213–215. doi: 10.3233/ben-2010-0298.
    1. Magnani B., Pavani F., Frassinetti F. Changing auditory time with prismatic goggles. Cognition. 2012;125(2):233–243. doi: 10.1016/j.cognition.2012.07.001.
    1. Jewell G., McCourt M. E. Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia. 2000;38(1):93–110. doi: 10.1016/s0028-3932(99)00045-7.
    1. Schmitz R., Peigneux P. Age-related changes in visual pseudoneglect. Brain and Cognition. 2011;76(3):382–389. doi: 10.1016/j.bandc.2011.04.002.
    1. Toba M.-N., Cavanagh P., Bartolomeo P. Attention biases the perceived midpoint of horizontal lines. Neuropsychologia. 2011;49(2):238–246. doi: 10.1016/j.neuropsychologia.2010.11.022.
    1. Benwell C. S. Y., Thut G., Grant A., Harvey M. A rightward shift in the visuospatial attention vector with healthy aging. Frontiers in Aging Neuroscience. 2014;6, article 113 doi: 10.3389/fnagi.2014.00113.
    1. Longo M. R., Trippier S., Vagnoni E., Lourenco S. F. Right hemisphere control of visuospatial attention in near space. Neuropsychologia. 2015;70:350–357. doi: 10.1016/j.neuropsychologia.2014.10.035.
    1. Colent C., Pisella L., Bernieri C., Rode G., Rossetti Y. Cognitive bias induced by visuo-motor adaptation to prisms: a simulation of unilateral neglect in normal individuals? NeuroReport. 2000;11(9):1899–1902. doi: 10.1097/00001756-200006260-00019.
    1. Michel C., Pisella L., Halligan P. W., et al. Simulating unilateral neglect in normals using prism adaptation: implications for theory. Neuropsychologia. 2003;41(1):25–39. doi: 10.1016/s0028-3932(02)00135-5.
    1. Loftus A. M., Vijayakumar N., Nicholls M. E. R. Prism adaptation overcomes pseudoneglect for the greyscales task. Cortex. 2009;45(4):537–543. doi: 10.1016/j.cortex.2007.12.011.
    1. Nijboer T., Vree A., Dijkerman C., Van der Stigchel S. Prism adaptation influences perception but not attention: evidence from antisaccades. NeuroReport. 2010;21(5):386–389. doi: 10.1097/wnr.0b013e328337f95f.
    1. Pisella L., Rode G., Farnè A., Boisson D., Rossetti Y. Dissociated long lasting improvements of straight-ahead pointing and line bisection tasks in two hemineglect patients. Neuropsychologia. 2002;40(3):327–334. doi: 10.1016/s0028-3932(01)00107-5.
    1. Reed S. A., Dassonville P. Adaptation to leftward-shifting prisms enhances local processing in healthy individuals. Neuropsychologia. 2014;56(1):418–427. doi: 10.1016/j.neuropsychologia.2014.02.012.
    1. Ferrè E. R., Longo M. R., Fiori F., Haggard P. Vestibular modulation of spatial perception. Frontiers in Human Neuroscience. 2013;7, article 660 doi: 10.3389/fnhum.2013.00660.
    1. Gamberini L., Seraglia B., Priftis K. Processing of peripersonal and extrapersonal space using tools: evidence from visual line bisection in real and virtual environments. Neuropsychologia. 2008;46(5):1298–1304. doi: 10.1016/j.neuropsychologia.2007.12.016.
    1. Lourenco S. F., Longo M. R. The plasticity of near space: evidence for contraction. Cognition. 2009;112(3):451–456. doi: 10.1016/j.cognition.2009.05.011.
    1. Longo M. R., Lourenco S. F. On the nature of near space: effects of tool use and the transition to far space. Neuropsychologia. 2006;44(6):977–981. doi: 10.1016/j.neuropsychologia.2005.09.003.
    1. Longo M. R., Lourenco S. F. Space perception and body morphology: extent of near space scales with arm length. Experimental Brain Research. 2007;177(2):285–290. doi: 10.1007/s00221-007-0855-x.
    1. Berti A., Frassinetti F. When far becomes near: remapping of space by tool use. Journal of Cognitive Neuroscience. 2000;12(3):415–420. doi: 10.1162/089892900562237.
    1. Witt J. K., Proffitt D. R., Epstein W. Tool use affects perceived distance, but only when you intend to use it. Journal of Experimental Psychology: Human Perception and Performance. 2005;31(5):880–888. doi: 10.1037/0096-1523.31.5.880.
    1. Cardinali L., Frassinetti F., Brozzoli C., Urquizar C., Roy A. C., Farnè A. Tool-use induces morphological updating of the body schema. Current Biology. 2009;19(13):p. 1157. doi: 10.1016/j.cub.2009.06.048.
    1. Makin T. R., Brozzoli C., Cardinali L., Holmes N. P., Farnè A. Left or right? Rapid visuomotor coding of hand laterality during motor decisions. Cortex. 2015;64:289–292. doi: 10.1016/j.cortex.2014.12.004.
    1. Cardellicchio P., Sinigaglia C., Costantini M. The space of affordances: a TMS study. Neuropsychologia. 2011;49(5):1369–1372. doi: 10.1016/j.neuropsychologia.2011.01.021.
    1. Makin T. R., Holmes N. P., Brozzoli C., Rossetti Y., Farnè A. Coding of visual space during motor preparation: approaching objects rapidly modulate corticospinal excitability in hand-centered coordinates. Journal of Neuroscience. 2009;29(38):11841–11851. doi: 10.1523/jneurosci.2955-09.2009.
    1. Serino A., Annella L., Avenanti A. Motor properties of peripersonal space in humans. PLoS ONE. 2009;4(8) doi: 10.1371/journal.pone.0006582.e6582
    1. Farnè A., Làdavas E. Dynamic size-change of hand peripersonal space following tool use. NeuroReport. 2000;11(8):1645–1649. doi: 10.1097/00001756-200006050-00010.
    1. Maravita A., Husain M., Clarke K., Driver J. Reaching with a tool extends visual-tactile interactions into far space: evidence from cross-modal extinction. Neuropsychologia. 2001;39(6):580–585. doi: 10.1016/s0028-3932(00)00150-0.
    1. Costantini M., Frassinetti F., Maini M., Ambrosini E., Gallese V., Sinigaglia C. When a laser pen becomes a stick: remapping of space by tool-use observation in hemispatial neglect. Experimental Brain Research. 2014;232(10):3233–3241. doi: 10.1007/s00221-014-4012-z.
    1. Makin T. R., Holmes N. P., Zohary E. Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus. The Journal of Neuroscience. 2007;27(4):731–740. doi: 10.1523/jneurosci.3653-06.2007.
    1. Brozzoli C., Gentile G., Petkova V. I., Ehrsson H. H. fMRI adaptation reveals a cortical mechanism for the coding of space near the hand. Journal of Neuroscience. 2011;31(24):9023–9031. doi: 10.1523/jneurosci.1172-11.2011.
    1. Brozzoli C., Gentile G., Henrik Ehrsson H. That's near my hand! Parietal and premotor coding of hand-centered space contributes to localization and self-attribution of the hand. Journal of Neuroscience. 2012;32(42):14573–14582. doi: 10.1523/JNEUROSCI.2660-12.2012.
    1. Brozzoli C., Gentile G., Bergouignan L., Ehrsson H. H. A shared representation of the space near oneself and others in the human premotor cortex. Current Biology. 2013;23(18):1764–1768. doi: 10.1016/j.cub.2013.07.004.
    1. Cléry J., Guipponi O., Wardak C., Ben Hamed S. Neuronal bases of peripersonal and extrapersonal spaces, their plasticity and their dynamics: knowns and unknowns. Neuropsychologia. 2015;70:313–326. doi: 10.1016/j.neuropsychologia.2014.10.022.
    1. di Pellegrino G., Làdavas E. Peripersonal space in the brain. Neuropsychologia. 2015;66:126–133. doi: 10.1016/j.neuropsychologia.2014.11.011.
    1. Brozzoli C., Ehrsson H., Farnè A. Multisensory representation of the space near the hand: from perception to action and interindividual interactions. The Neuroscientist. 2014;20(2):122–135. doi: 10.1177/1073858413511153.
    1. Milner A. D., Brechmann M., Pagliarini L. To halve and to halve not: an analysis of line bisection judgements in normal subjects. Neuropsychologia. 1992;30(6):515–526. doi: 10.1016/0028-3932(92)90055-q.
    1. McCourt M. E., Olafson C. Cognitive and perceptual influences on visual line bisection: psychophysical and chronometric analyses of pseudoneglect. Neuropsychologia. 1997;35(3):369–380. doi: 10.1016/s0028-3932(96)00143-1.
    1. Olk B., Harvey M. Effects of visible and invisible cueing on line bisection and Landmark performance in hemispatial neglect. Neuropsychologia. 2002;40(3):282–290. doi: 10.1016/S0028-3932(01)00095-1.
    1. Kliegl K. M., Limbrecht-Ecklundt K., Dürr L., Traue H. C., Huckauf A. The complex duration perception of emotional faces: effects of face direction. Frontiers in Psychology. 2015;6, article 262 doi: 10.3389/fpsyg.2015.00262.
    1. Lindbergh C. A., Kieffaber P. D. The neural correlates of temporal judgments in the duration bisection task. Neuropsychologia. 2013;51(2):191–196. doi: 10.1016/j.neuropsychologia.2012.09.001.
    1. Suarez I., Lopera F., Pineda D., Casini L. The cognitive structure of time estimation impairments in adults with attention deficit hyperactivity disorder. Cognitive Neuropsychology. 2013;30(4):195–207. doi: 10.1080/02643294.2013.842548.
    1. Oldfield R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. doi: 10.1016/0028-3932(71)90067-4.
    1. Frassinetti F., Angeli V., Meneghello F., Avanzi S., Làdavas E. Long-lasting amelioration of visuospatial neglect by prism adaptation. Brain. 2002;125(3):608–623. doi: 10.1093/brain/awf056.
    1. Berberovic N., Mattingley J. B. Effects of prismatic adaptation on judgements of spatial extent in peripersonal and extrapersonal space. Neuropsychologia. 2003;41(4):493–503. doi: 10.1016/S0028-3932(02)00090-8.
    1. Rossetti Y., Rode G., Pisella L., et al. Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature. 1998;395(6698):166–169. doi: 10.1038/25988.
    1. Farnè A., Rossetti Y., Toniolo S., Làdavas E. Ameliorating neglect with prism adaptation: visuo-manual and visuo-verbal measures. Neuropsychologia. 2002;40(7):718–729. doi: 10.1016/s0028-3932(01)00186-5.
    1. Striemer C. L., Danckert J. Dissociating perceptual and motor effects of prism adaptation in neglect. NeuroReport. 2010;21(6):436–441. doi: 10.1097/WNR.0b013e328338592f.
    1. Newport R., Schenk T. Prisms and neglect: what have we learned? Neuropsychologia. 2012;50(6):1080–1091. doi: 10.1016/j.neuropsychologia.2012.01.023.
    1. Angeli V., Benassi M. G., Làdavas E. Recovery of oculo-motor bias in neglect patients after prism adaptation. Neuropsychologia. 2004;42(9):1223–1234. doi: 10.1016/j.neuropsychologia.2004.01.007.
    1. Serino A., Angeli V., Frassinetti F., Làdavas E. Mechanisms underlying neglect recovery after prism adaptation. Neuropsychologia. 2006;44(7):1068–1078. doi: 10.1016/j.neuropsychologia.2005.10.024.
    1. Serino A., Barbiani M., Rinaldesi M. L., Ladavas E. Effectiveness of prism adaptation in neglect rehabilitation: a controlled trial study. Stroke. 2009;40(4):1392–1398. doi: 10.1161/strokeaha.108.530485.
    1. Rizzolatti G., Gallese V. Mechanisms and theories of spatial neglect. In: Boller F., Grafman J., editors. Handbook of Neuropsychology. 1st. Vol. 1. Amsterdam, The Netherlands: Elsevier; 1988. pp. 223–249.
    1. Colby C. L., Duhamel J.-R., Goldberg M. E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. Journal of Neurophysiology. 1996;76(5):2841–2852.
    1. Meador K. J., Loring D. W., Bowers D., Heilman K. M. Remote memory and neglect syndrome. Neurology. 1987;37(3):522–526. doi: 10.1212/WNL.37.3.522.
    1. Luauté J., Jacquin-Courtois S., O'Shea J., et al. Left-deviating prism adaptation in left neglect patient: reflexions on a negative result. Neural Plasticity. 2012;2012:10. doi: 10.1155/2012/718604.718604
    1. Goedert K. M., Leblanc A., Tsai S.-W., Barrett A. M. Asymmetrical effects of adaptation to left- and right-shifting prisms depends on pre-existing attentional biases. Journal of the International Neuropsychological Society. 2010;16(5):795–804. doi: 10.1017/s1355617710000597.
    1. Pisella L., Rode G., Farnè A., Tilikete C., Rossetti Y. Prism adaptation in the rehabilitation of patients with visuo-spatial cognitive disorders. Current Opinion in Neurology. 2006;19(6):534–542. doi: 10.1097/WCO.0b013e328010924b.
    1. Oliveri M., Magnani B., Filipelli A., Avanzi S., Frassinetti F. Prismatic adaptation effects on spatial representation of time in neglect patients. Cortex. 2013;49(1):120–130. doi: 10.1016/j.cortex.2011.11.010.
    1. Winter B., Marghetis T., Matlock T. Of magnitudes and metaphors: explaining cognitive interactions between space, time, and number. Cortex. 2015;64:209–224. doi: 10.1016/j.cortex.2014.10.015.
    1. Masson N., Pesenti M., Dormal V. Duration and numerical estimation in right brain-damaged patients with and without neglect: lack of support for a mental time line. British Journal of Psychology. 2015 doi: 10.1111/bjop.12155.
    1. Saj A., Fuhrman O., Vuilleumier P., Boroditsky L. Patients with left spatial neglect also neglect the ‘left side’ of time. Psychological Science. 2014;25(1):207–214. doi: 10.1177/0956797612475222.
    1. Weger U. W., Pratt J. Time flies like an arrow: space-time compatibility effects suggest the use of a mental timeline. Psychonomic Bulletin & Review. 2008;15(2):426–430. doi: 10.3758/pbr.15.2.426.
    1. Bonato M., Zorzi M., Umiltà C. When time is space: evidence for a mental time line. Neuroscience & Biobehavioral Reviews. 2012;36(10):2257–2273. doi: 10.1016/j.neubiorev.2012.08.007.
    1. Núñez R. E., Sweetser E. With the future behind them: convergent evidence from Aymara language and gesture in the crosslinguistic comparison of spatial construals of time. Cognitive Science. 2006;30(3):401–450. doi: 10.1207/s15516709cog0000_62.
    1. Núñez R., Cooperrider K. The tangle of space and time in human cognition. Trends in Cognitive Sciences. 2013;17(5):220–229. doi: 10.1016/j.tics.2013.03.008.
    1. Casasanto D., Boroditsky L. Time in the mind: using space to think about time. Cognition. 2008;106(2):579–593. doi: 10.1016/j.cognition.2007.03.004.
    1. Bottini R., Casasanto D. Space and time in the child's mind: metaphoric or ATOMic. Frontiers in Psychology. 2013;4, article 803 doi: 10.3389/fpsyg.2013.00803.
    1. Casasanto D., Fotakopoulou O., Boroditsky L. Space and time in the child's mind: evidence for a cross-dimensional asymmetry. Cognitive Science. 2010;34(3):387–405. doi: 10.1111/j.1551-6709.2010.01094.x.

Source: PubMed

3
Sottoscrivi