Dutch multicentre, prospective follow-up, cohort study comparing the neurological and neuropsychological sequelae of hospitalised non-ICU- and ICU-treated COVID-19 survivors: a study protocol

Simona Klinkhammer, Janneke Horn, Johanna M A Visser-Meilij, Esmée Verwijk, Annelien Duits, Arjen J C Slooter, Caroline M van Heugten, NeNeSCo study group, Marcel Jh Aries, Bas Ct van Bussel, Jaap Fa Jansen, Mark Lf Janssen, Alida A Postma, Susanne van Santen, Fabienne Jh Magdelijns, Rein Posthuma, Meta van der Woude, Amy Otten, Attila Karakus, Inez Bronsveld, Niek Galenkamp, Karin Ah Kaasjager, Dook W Koch, Gert J Geurtsen, Matthijs C Brouwer, Wytske A Kylstra, Kees Brinkman, Simona Klinkhammer, Janneke Horn, Johanna M A Visser-Meilij, Esmée Verwijk, Annelien Duits, Arjen J C Slooter, Caroline M van Heugten, NeNeSCo study group, Marcel Jh Aries, Bas Ct van Bussel, Jaap Fa Jansen, Mark Lf Janssen, Alida A Postma, Susanne van Santen, Fabienne Jh Magdelijns, Rein Posthuma, Meta van der Woude, Amy Otten, Attila Karakus, Inez Bronsveld, Niek Galenkamp, Karin Ah Kaasjager, Dook W Koch, Gert J Geurtsen, Matthijs C Brouwer, Wytske A Kylstra, Kees Brinkman

Abstract

Introduction: Owing to the novelty of COVID-19, there are still large knowledge gaps concerning its effect on the brain and the resulting impact on peoples' lives. This large-scale prospective follow-up study investigates COVID-19-associated brain damage, neuropsychological dysfunction and long-term impact on the well-being of patients and their close ones. It is hypothesised that structural brain damage and cognitive dysfunction primarily occur in severely ill patients, as compared with moderately ill patients. Cognitive complaints, emotional distress and impact on well-being are hypothesised to be less dependent on illness severity.

Methods and analysis: For this multicentre study, 200 patients with COVID-19 (100 intensive care unit (ICU) patients and 100 non-ICU patients) formerly hospitalised in one of the six recruiting hospitals during the first European infection wave (ie, March to June 2020) and their close ones will be recruited. At minimally 6 months posthospital discharge, patients will perform a set of neuropsychological tests and are subjected to a 3T MRI scan. Patients and close ones will fill out a set of questionnaires, also at minimally 6 months posthospital discharge and again another 6 months thereafter. Data related to COVID-19 hospitalisation will be extracted from the patients' medical records. MRI abnormalities will ultimately be related to neuropsychological test performance and questionnaire outcomes.

Ethics and dissemination: Ethics approval was granted by the medical research ethics committee of Maastricht University Medical Centre and Maastricht University (NL75102.068.20). The project is sponsored by The Brain Foundation Netherlands. Findings will be presented at national and international conferences, as well as published in peer-reviewed scientific journals.

Trial registration number: NCT04745611.

Keywords: COVID-19; magnetic resonance imaging; neuropathology; neuroradiology; psychiatry.

Conflict of interest statement

Competing interests: None declared.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Figures

Figure 1
Figure 1
The recruitment process. MRI, magnetic resonance imaging; NP, neuropsychological testing; PIL, participant information letter; RT, research team; T1, timepoint 1; T2, timepoint 2.

References

    1. Leonardi M, Padovani A, McArthur JC. Neurological manifestations associated with COVID-19: a review and a call for action. J Neurol 2020;267:1573–6. 10.1007/s00415-020-09896-z
    1. Kremer S, Lersy F, de Sèze J, et al. . Brain MRI findings in severe COVID-19: a retrospective observational study. Radiology 2020;297:E242–51. 10.1148/radiol.2020202222
    1. Kandemirli SG, Dogan L, Sarikaya ZT, et al. . Brain MRI findings in patients in the intensive care unit with COVID-19 infection. Radiology 2020;297:E232–5. 10.1148/radiol.2020201697
    1. Correia AO, Feitosa PWG, Moreira JLdeS, et al. . Neurological manifestations of COVID-19 and other coronaviruses: a systematic review. Neurology, Psychiatry and Brain Research 2020;37:27–32. 10.1016/j.npbr.2020.05.008
    1. Egbert AR, Cankurtaran S, Karpiak S. Brain abnormalities in COVID-19 acute/subacute phase: a rapid systematic review. Brain Behav Immun 2020;89:543–54. 10.1016/j.bbi.2020.07.014
    1. Gulko E, Oleksk ML, Gomes W, et al. . Mri brain findings in 126 patients with COVID-19: initial observations from a descriptive literature review. AJNR Am J Neuroradiol 2020;41:2199–203. 10.3174/ajnr.A6805
    1. Pezzini A, Padovani A. Lifting the mask on neurological manifestations of COVID-19. Nat Rev Neurol 2020;16:636–44. 10.1038/s41582-020-0398-3
    1. Mazeraud A, Righy C, Bouchereau E, et al. . Septic-Associated encephalopathy: a comprehensive review. Neurotherapeutics 2020;17:392–403. 10.1007/s13311-020-00862-1
    1. Carod-Artal FJ. Neurological complications of coronavirus and COVID-19. Rev Neurol 2020;70:311–22. 10.33588/rn.7009.2020179
    1. Almeria M, Cejudo JC, Sotoca J, et al. . Cognitive profile following COVID-19 infection: clinical predictors leading to neuropsychological impairment. Brain Behav Immun Health 2020;9:100163. 10.1016/j.bbih.2020.100163
    1. Jaywant A, Vanderlind WM, Alexopoulos GS. Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19. Neuropsychopharmacology 2021:1–6. 10.1038/s41386-021-00978-8
    1. Taquet M, Luciano S, Geddes JR, et al. . Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry 2021;8:130–40. 10.1016/S2215-0366(20)30462-4
    1. Vos L, Williams MW, Poritz JMP, et al. . The discrepancy between cognitive complaints and neuropsychological test findings in persons with traumatic brain injury. J Head Trauma Rehabil 2020;35:E382–92. 10.1097/HTR.0000000000000557
    1. Davidson JE, Jones C, Bienvenu OJ. Family response to critical illness: postintensive care syndrome-family. Crit Care Med 2012;40:618–24. 10.1097/CCM.0b013e318236ebf9
    1. Paterson RW, Brown RL, Benjamin L, et al. . The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain 2020;143:3104-3120. 10.1093/brain/awaa240
    1. Borland E, Nägga K, Nilsson PM, et al. . The Montreal cognitive assessment: normative data from a large Swedish population-based cohort. J Alzheimers Dis 2017;59:893–901. 10.3233/JAD-170203
    1. Nijsse B, Visser-Meily JMA, van Mierlo ML, et al. . Temporal evolution of poststroke cognitive impairment using the Montreal cognitive assessment. Stroke 2017;48:98–104. 10.1161/STROKEAHA.116.014168
    1. Verwijk E, Geurtsen G, Renssen J. Aanbevelingen voor Het monitoren van cognitieve gevolgen bij post-IC COVID-19 patiënten, 2020. Available: [Accessed 19 May 2021].
    1. Nasreddine ZS, Phillips NA, Bédirian V, et al. . The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53:695–9. 10.1111/j.1532-5415.2005.53221.x
    1. Rey A. L'examen clinique en psychologie, 1958.
    1. Reitan RM, Wolfson D. The Halstead-Reitan neuropsychological test battery: theory and clinical interpretation: Reitan neuropsychology, 1985.
    1. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol 1935;18:643–62. 10.1037/h0054651
    1. Wechsler D. Wechsler adult intelligence scale, 1955.
    1. Benton AL, Abigail B, Sivan AB. Contributions to neuropsychological assessment: a clinical manual. USA: Oxford University Press, 1994.
    1. Roth C. Boston Naming Test. In: Kreutzer JS, DeLuca J, Caplan B, eds. Encyclopedia of clinical neuropsychology. New York, NY: Springer New York, 2011: 430–3.
    1. Benton AL. Differential behavioral effects in frontal lobe disease. Neuropsychologia 1968;6:53–60. 10.1016/0028-3932(68)90038-9
    1. Iverson GL. Test of Memory Malingering. In: Kreutzer JS, DeLuca J, Caplan B, eds. Encyclopedia of clinical neuropsychology. New York, NY: Springer New York, 2011: 2494–6.
    1. Ottenhoff MC, Ramos LL, Potters W. Predicting mortality of individual COVID-19 patients: a multicenter Dutch cohort. medRxiv 2020. 10.1136/bmjopen-2020-047347
    1. Wahlund L-O, Westman E, van Westen D, et al. . Imaging biomarkers of dementia: recommended visual rating scales with teaching cases. Insights Imaging 2017;8:79–90. 10.1007/s13244-016-0521-6
    1. Klarenbeek P, van Oostenbrugge RJ, Rouhl RPW, et al. . Ambulatory blood pressure in patients with lacunar stroke: association with total MRI burden of cerebral small vessel disease. Stroke 2013;44:2995–9. 10.1161/STROKEAHA.113.002545
    1. Wilson D, Ambler G, Lee K-J, et al. . Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies. Lancet Neurol 2019;18:653–65. 10.1016/S1474-4422(19)30197-8
    1. Hill NL, McDermott C, Mogle J, et al. . Subjective cognitive impairment and quality of life: a systematic review. Int Psychogeriatr 2017;29:1965. 10.1017/S1041610217001636
    1. Hopkins RO, Jackson JC. Long-Term neurocognitive function after critical illness. Chest 2006;130:869–78. 10.1378/chest.130.3.869
    1. Suchyta MR, Jephson A, Hopkins RO. Neurologic changes during critical illness: brain imaging findings and neurobehavioral outcomes. Brain Imaging Behav 2010;4:22–34. 10.1007/s11682-009-9082-3
    1. Jackson JC, Ely EW. Cognitive impairment after critical illness: etiologies, risk factors, and future directions. Semin Respir Crit Care Med 2013;34:216–22. 10.1055/s-0033-1342984
    1. Hopkins RO, Suchyta MR, Beene K, et al. . Critical illness acquired brain injury: neuroimaging and implications for rehabilitation. Rehabil Psychol 2016;61:151. 10.1037/rep0000088
    1. Brown CH, Sharrett AR, Coresh J, et al. . Association of hospitalization with long-term cognitive and brain MRI changes in the ARIC cohort. Neurology 2015;84:1443–53. 10.1212/WNL.0000000000001439
    1. Al-Sarraj S, Troakes C, Hanley B, et al. . Invited review: the spectrum of neuropathology in COVID-19. Neuropathol Appl Neurobiol 2021;47:3–16. 10.1111/nan.12667
    1. Lane-Fall MB, Kuza CM, Fakhry S, et al. . The lifetime effects of injury: postintensive care syndrome and posttraumatic stress disorder. Anesthesiol Clin 2019;37:135–50. 10.1016/j.anclin.2018.09.012
    1. Pandharipande PP, Girard TD, Jackson JC, et al. . Long-Term cognitive impairment after critical illness. N Engl J Med 2013;369:1306–16. 10.1056/NEJMoa1301372
    1. Honarmand K, Lalli RS, Priestap F, et al. . Natural history of cognitive impairment in critical illness survivors. A systematic review. Am J Respir Crit Care Med 2020;202:193–201. 10.1164/rccm.201904-0816CI
    1. Wise J. Covid-19: arthritis drug tocilizumab reduces deaths in hospitalised patients, study shows. BMJ 2021;372:n433. 10.1136/bmj.n433
    1. Karagiannidis C, Windisch W, McAuley DF, et al. . Major differences in ICU admissions during the first and second COVID-19 wave in Germany. Lancet Respir Med 2021;9:e47–8. 10.1016/S2213-2600(21)00101-6
    1. Ahmed MH, Hassan A. Dexamethasone for the treatment of coronavirus disease (COVID-19): a review. SN Comprehensive Clinical Medicine 2020;2:2637–46. 10.1007/s42399-020-00610-8
    1. Herdman M, Gudex C, Lloyd A, et al. . Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res 2011;20:1727–36. 10.1007/s11136-011-9903-x
    1. van der Zee CH, Visser-Meily JMA, Lindeman E, et al. . Participation in the chronic phase of stroke. Top Stroke Rehabil 2013;20:52–61. 10.1310/tsr2001-52
    1. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983;67:361–70. 10.1111/j.1600-0447.1983.tb09716.x
    1. Prins A, Ouimette P, Kimerling R, et al. . The primary care PTSD screen (PC–PTSD): development and operating characteristics. Primary Care Psychiatry 2004;9:9–14. 10.1185/135525703125002360
    1. Schreurs P, Van de Willige G, Brosschot J, et al. . Handleiding utrechtse coping lijst UCL (herziene versie), 1993. Available: [Accessed 19 May 2021].
    1. Mahoney FI, Barthel DW. Functional evaluation: the Barthel index: a simple index of independence useful in scoring improvement in the rehabilitation of the chronically ill. Md State Med J 1965.
    1. U.S. Department of Health and Human Services . Patient-Reported outcomes measurement information system, 2021. Available:
    1. Bastien CH, Vallières A, Morin CM. Validation of the insomnia severity index as an outcome measure for insomnia research. Sleep Med 2001;2:297–307. 10.1016/s1389-9457(00)00065-4
    1. Buysse DJ, Reynolds CF, Monk TH, et al. . The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res 1989;28:193–213. 10.1016/0165-1781(89)90047-4
    1. Shirley Ryan Ability Lab . Fatigue severity scale 2016. Available: [Accessed 25 Mar 2021].
    1. Kempen GIJM, Van Eijk LM. The psychometric properties of the SSL12-I, a short scale for measuring social support in the elderly. Soc Indic Res 1995;35:303–12. 10.1007/BF01079163
    1. Sullivan MT. Caregiver strain index (CsI). Home Healthc Nurse 2003;21:197–8. 10.1097/00004045-200303000-00024
    1. van Heugten C, Rasquin S, Winkens I, et al. . Checklist for cognitive and emotional consequences following stroke (CLCE-24): development, usability and quality of the self-report version. Clin Neurol Neurosurg 2007;109:257–62. 10.1016/j.clineuro.2006.10.002

Source: PubMed

3
Sottoscrivi