Unravelling the genetic basis of simplex Retinitis Pigmentosa cases

Nereida Bravo-Gil, María González-Del Pozo, Marta Martín-Sánchez, Cristina Méndez-Vidal, Enrique Rodríguez-de la Rúa, Salud Borrego, Guillermo Antiñolo, Nereida Bravo-Gil, María González-Del Pozo, Marta Martín-Sánchez, Cristina Méndez-Vidal, Enrique Rodríguez-de la Rúa, Salud Borrego, Guillermo Antiñolo

Abstract

Retinitis Pigmentosa (RP) is the most common form of inherited retinal dystrophy (IRD) characterized ultimately by photoreceptors degeneration. Exhibiting great clinical and genetic heterogeneity, RP can be inherited as an autosomal dominant (ad), autosomal recessive (ar) and X-linked (xl) disorder. Although the relative prevalence of each form varies somewhat between populations, a major proportion (41% in Spain) of patients represent simplex cases (sRP) in which the mode of inheritance is unknown. Molecular genetic diagnostic is crucial, but also challenging, for sRP patients because any of the 81 RP genes identified to date may be causative. Herein, we report the use of a customized targeted gene panel consisting of 68 IRD genes for the molecular characterization of 106 sRP cases. The diagnostic rate was 62.26% (66 of 106) with a proportion of clinical refinements of 30.3%, demonstrating the high efficiency of this genomic approach even for clinically ambiguous cases. The high number of patients diagnosed here has allowed us to study in detail the genetic basis of the sRP. The solved sRP cohort is composed of 62.1% of arRP cases, 24.2% of adRP and 13.6% of xlRP, which implies consequences for counselling of patients and families.

Conflict of interest statement

The authors declare no competing financial interests.

Figures

Figure 1. Prevalence analyses of solved cases.
Figure 1. Prevalence analyses of solved cases.
(A) Proportion of each type of mutation. (B) Principal detected modes of inheritance. (C) Recurrence of all mutated retinal genes. (D) Distribution of different types of mutations for each of the identified mutated gene.
Figure 2. Genotype-phenotype correlations.
Figure 2. Genotype-phenotype correlations.
(A) Overlapping phenotypes among different forms of non syndromic IRD: RP (Retinitis Pigmentosa), CHM (Choroideremia), CD/CRD (Cone dystrophy/Cone-rod dystrophy), STGD (Stargardt disease) and LCA (Leber congenital amaurosis). Gene positions show the associated phenotype/s and the first reported symptom of cases in which they are involved (NB: Night blindness; RVF: Reduced visual field; DVA: Decreased visual acuity). Asterisks indicate genes represented more than once in the figure due to the high heterogeneity. (B) Distribution of types of mutations behind the different phenotypes caused by the same gene. (C) Mean age of onset of each of the identified genes. Vertical lines show the age of onset of cases not included in the average to be considerably different from the rest. Of note, the gene RHO was identified in only two cases with very different clinical features hence the calculated average may not be representative. Moreover, this representation do not include clinical and genetic data of family #65 since the large deletion affects several genes and it is not possible to determine the involvement of each of them. Light blue marks early-onset cases while a juvenile onset is stated with medium blue and a late-onset with dark blue. (D) Distribution of early-, juvenile- and late-onset IRD for the different modes of inheritance.

References

    1. Hartong D. T., Berson E. L. & Dryja T. P. Retinitis pigmentosa. Lancet 368, 1795–1809, doi: 10.1016/S0140-6736(06)69740-7 (2006).
    1. Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis 1, 40, doi: 10.1186/1750-1172-1-40 (2006).
    1. Ayuso C. et al.. Retinitis pigmentosa in Spain. The Spanish Multicentric and Multidisciplinary Group for Research into Retinitis Pigmentosa. Clin Genet 48, 120–122 (1995).
    1. Neveling K. et al.. Next-generation genetic testing for retinitis pigmentosa. Hum Mutat 33, 963–972, doi: 10.1002/humu.22045 (2012).
    1. Dryja T. P. & Berson E. L. Retinitis pigmentosa and allied diseases. Implications of genetic heterogeneity. Invest Ophthalmol Vis Sci 36, 1197–1200 (1995).
    1. Kajiwara K., Berson E. L. & Dryja T. P. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264, 1604–1608 (1994).
    1. Thompson D. A. et al.. Retinal dystrophy due to paternal isodisomy for chromosome 1 or chromosome 2, with homoallelism for mutations in RPE65 or MERTK, respectively. Am J Hum Genet 70, 224–229, doi: 10.1086/338455 (2002).
    1. Branham K. et al.. Mutations in RPGR and RP2 account for 15% of males with simplex retinal degenerative disease. Invest Ophthalmol Vis Sci 53, 8232–8237, doi: 10.1167/iovs.12-11025 (2012).
    1. Vithana E. N. et al.. Expression of PRPF31 mRNA in patients with autosomal dominant retinitis pigmentosa: a molecular clue for incomplete penetrance? Invest Ophthalmol Vis Sci 44, 4204–4209 (2003).
    1. Gonzalez-del Pozo M. et al.. Exome sequencing reveals novel and recurrent mutations with clinical significance in inherited retinal dystrophies. PLoS One 9, e116176, doi: 10.1371/journal.pone.0116176 (2014).
    1. Bravo-Gil N. et al.. Improving the management of Inherited Retinal Dystrophies by targeted sequencing of a population-specific gene panel. Sci Rep 6, 23910, doi: 10.1038/srep23910 (2016).
    1. Gonzalez-del Pozo M. et al.. Re-evaluation casts doubt on the pathogenicity of homozygous USH2A p.C759F. Am J Med Genet A 167, 1597–1600, doi: 10.1002/ajmg.a.37003 (2015).
    1. Weisschuh N. et al.. Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing. PLoS One 11, e0145951, doi: 10.1371/journal.pone.0145951 (2016).
    1. Consugar M. B. et al.. Panel-based genetic diagnostic testing for inherited eye diseases is highly accurate and reproducible, and more sensitive for variant detection, than exome sequencing. Genet Med 17, 253–261, doi: 10.1038/gim.2014.172 (2015).
    1. Jin Z. B. et al.. Identifying pathogenic genetic background of simplex or multiplex retinitis pigmentosa patients: a large scale mutation screening study. J Med Genet 45, 465–472, doi: 10.1136/jmg.2007.056416 (2008).
    1. Sohocki M. M. et al.. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 17, 42–51, doi: 10.1002/1098-1004(2001)17:1<42::AID-HUMU5>;2-K (2001).
    1. Audo I. et al.. Prevalence and novelty of PRPF31 mutations in French autosomal dominant rod-cone dystrophy patients and a review of published reports. BMC Med Genet 11, 145, doi: 10.1186/1471-2350-11-145 (2010).
    1. Rivolta C. et al.. Variation in retinitis pigmentosa-11 (PRPF31 or RP11) gene expression between symptomatic and asymptomatic patients with dominant RP11 mutations. Hum Mutat 27, 644–653, doi: 10.1002/humu.20325 (2006).
    1. Beltran W. A. et al.. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci USA 109, 2132–2137, doi: 10.1073/pnas.1118847109 (2012).
    1. Chang S., Vaccarella L., Olatunji S., Cebulla C. & Christoforidis J. Diagnostic challenges in retinitis pigmentosa: genotypic multiplicity and phenotypic variability. Curr Genomics 12, 267–275, doi: 10.2174/138920211795860116 (2011).
    1. Breuer D. K. et al.. A comprehensive mutation analysis of RP2 and RPGR in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet 70, 1545–1554, doi: 10.1086/340848 (2002).
    1. Al-Rashed M. et al.. RP1 and retinitis pigmentosa: report of novel mutations and insight into mutational mechanism. Br J Ophthalmol 96, 1018–1022, doi: 10.1136/bjophthalmol-2011-301134 (2012).
    1. Glockle N. et al.. Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur J Hum Genet 22, 99–104, doi: 10.1038/ejhg.2013.72 (2014).
    1. Huang L. et al.. Molecular genetics of cone-rod dystrophy in Chinese patients: New data from 61 probands and mutation overview of 163 probands. Exp Eye Res 146, 252–258, doi: 10.1016/j.exer.2016.03.015 (2016).
    1. Avila-Fernandez A. et al.. Whole-exome sequencing reveals ZNF408 as a new gene associated with autosomal recessive retinitis pigmentosa with vitreal alterations. Hum Mol Genet 24, 4037–4048, doi: 10.1093/hmg/ddv140 (2015).
    1. Aller E. et al.. Genetic analysis of 2299delG and C759F mutations (USH2A) in patients with visual and/or auditory impairments. Eur J Hum Genet 12, 407–410, doi: 10.1038/sj.ejhg.5201138 (2004).
    1. Henderson R. H. et al.. Phenotypic variability in patients with retinal dystrophies due to mutations in CRB1. Br J Ophthalmol 95, 811–817, doi: 10.1136/bjo.2010.186882 (2011).
    1. Katagiri S. et al.. RHO Mutations (p.W126L and p.A346P) in Two Japanese Families with Autosomal Dominant Retinitis Pigmentosa. J Ophthalmol 2014, 210947, doi: 10.1155/2014/210947 (2014).
    1. Aleman T. S. et al.. CERKL mutations cause an autosomal recessive cone-rod dystrophy with inner retinopathy. Invest Ophthalmol Vis Sci 50, 5944–5954, doi: 10.1167/iovs.09-3982 (2009).
    1. Valverde D. et al.. Microarray-based mutation analysis of the ABCA4 gene in Spanish patients with Stargardt disease: evidence of a prevalent mutated allele. Mol Vis 12, 902–908 (2006).
    1. Dopazo J. et al.. 267 Spanish Exomes Reveal Population-Specific Differences in Disease-Related Genetic Variation. Mol Biol Evol 33(5), 1205–1218, doi: 10.1093/molbev/msw005 (2016).
    1. Mendez-Vidal C. et al.. Novel RP1 mutations and a recurrent BBS1 variant explain the co-existence of two distinct retinal phenotypes in the same pedigree. BMC Genet 15, 143, doi: 10.1186/s12863-014-0143-2 (2014).
    1. Wang K., Li M. & Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164, doi: 10.1093/nar/gkq603 (2010).
    1. Gerber S. et al.. Complete exon-intron structure of the retina-specific ATP binding transporter gene (ABCR) allows the identification of novel mutations underlying Stargardt disease. Genomics 48, 139–142, doi: 10.1006/geno.1997.5164 (1998).
    1. Webster A. R. et al.. An analysis of allelic variation in the ABCA4 gene. Invest Ophthalmol Vis Sci 42, 1179–1189 (2001).
    1. Brancati F. et al.. CEP290 mutations are frequently identified in the oculo-renal form of Joubert syndrome-related disorders. Am J Hum Genet 81, 104–113, doi: 10.1086/519026 (2007).
    1. Perrault I. et al.. Spectrum of NPHP6/CEP290 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat 28, 416, doi: 10.1002/humu.9485 (2007).
    1. Lu Y. P. Z., , Zhou H. H. & Li R. B. In Poster session presented at: 11th Asia Pacific Congress in Maternal Fetal Medicine (Taipei, Taiwan, 2015).
    1. den Hollander A. I. et al.. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79, 556–561, doi: 10.1086/507318 (2006).
    1. Tuson M., Marfany G. & Gonzalez-Duarte R. Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26). Am J Hum Genet 74, 128–138, doi: 10.1086/381055 (2004).
    1. Vallespin E. et al.. Mutation screening of 299 Spanish families with retinal dystrophies by Leber congenital amaurosis genotyping microarray. Invest Ophthalmol Vis Sci 48, 5653–5661, doi: 10.1167/iovs.07-0007 (2007).
    1. Bernal S. et al.. Mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa: high prevalence and phenotypic variation. J Med Genet 40, e8 (2003).
    1. Lotery A. J. et al.. Mutations in the CRB1 gene cause Leber congenital amaurosis. Arch Ophthalmol 119, 415–420 (2001).
    1. den Hollander A. I. et al.. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat Genet 23, 217–221, doi: 10.1038/13848 (1999).
    1. Yzer S. et al.. Microarray-based mutation detection and phenotypic characterization of patients with Leber congenital amaurosis. Invest Ophthalmol Vis Sci 47, 1167–1176, doi: 10.1167/iovs.05-0848 (2006).
    1. Arai Y. et al.. Retinitis Pigmentosa with EYS Mutations Is the Most Prevalent Inherited Retinal Dystrophy in Japanese Populations. J Ophthalmol 2015, 819760, doi: 10.1155/2015/819760 (2015).
    1. Le Quesne Stabej P. et al.. Comprehensive sequence analysis of nine Usher syndrome genes in the UK National Collaborative Usher Study. J Med Genet 49, 27–36, doi: 10.1136/jmedgenet-2011-100468 (2012).
    1. de Castro-Miro M. et al.. Combined genetic and high-throughput strategies for molecular diagnosis of inherited retinal dystrophies. PLoS One 9, e88410, doi: 10.1371/journal.pone.0088410 (2014).
    1. Avila-Fernandez A. et al.. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray. Mol Vis 16, 2550–2558 (2010).
    1. Thompson D. A. et al.. Retinal degeneration associated with RDH12 mutations results from decreased 11-cis retinal synthesis due to disruption of the visual cycle. Hum Mol Genet 14, 3865–3875, doi: 10.1093/hmg/ddi411 (2005).
    1. Avila-Fernandez A. et al.. Identification of an RP1 prevalent founder mutation and related phenotype in Spanish patients with early-onset autosomal recessive retinitis. Ophthalmology 119, 2616–2621, doi: 10.1016/j.ophtha.2012.06.033 (2012).
    1. Dreyer B. et al.. Spectrum of USH2A mutations in Scandinavian patients with Usher syndrome type II. Hum Mutat 29, 451, doi: 10.1002/humu.9524 (2008).
    1. Rivolta C., Sweklo E. A., Berson E. L. & Dryja T. P. Missense mutation in the USH2A gene: association with recessive retinitis pigmentosa without hearing loss. Am J Hum Genet 66, 1975–1978, doi: 10.1086/302926 (2000).
    1. Yan D. et al.. Mutation analysis in the long isoform of USH2A in American patients with Usher Syndrome type II. J Hum Genet 54, 732–738, doi: 10.1038/jhg.2009.107 (2009).
    1. Eudy J. D. et al.. Mutation of a gene encoding a protein with extracellular matrix motifs in Usher syndrome type IIa. Science 280, 1753–1757 (1998).
    1. Baux D. et al.. Enrichment of LOVD-USHbases with 152 USH2A genotypes defines an extensive mutational spectrum and highlights missense hotspots. Hum Mutat 35, 1179–1186, doi: 10.1002/humu.22608 (2014).
    1. Nakanishi H. et al.. Novel USH2A mutations in Japanese Usher syndrome type 2 patients: marked differences in the mutation spectrum between the Japanese and other populations. J Hum Genet 56, 484–490, doi: 10.1038/jhg.2011.45 (2011).
    1. Weston M. D. et al.. Genomic structure and identification of novel mutations in usherin, the gene responsible for Usher syndrome type IIa. Am J Hum Genet 66, 1199–1210 (2000).
    1. Baux D. et al.. Molecular and in silico analyses of the full-length isoform of usherin identify new pathogenic alleles in Usher type II patients. Hum Mutat 28, 781–789, doi: 10.1002/humu.20513 (2007).
    1. McGee T. L., Seyedahmadi B. J., Sweeney M. O., Dryja T. P. & Berson E. L. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa. J Med Genet 47, 499–506, doi: 10.1136/jmg.2009.075143 (2010).
    1. Chen X. et al.. Targeted next-generation sequencing reveals novel USH2A mutations associated with diverse disease phenotypes: implications for clinical and molecular diagnosis. PLoS One 9, e105439, doi: 10.1371/journal.pone.0105439 (2014).
    1. Aller E. et al.. Identification of 14 novel mutations in the long isoform of USH2A in Spanish patients with Usher syndrome type II. J Med Genet 43, e55, doi: 10.1136/jmg.2006.041764 (2006).
    1. Jacobson S. G., Kemp C. M., Sung C. H. & Nathans J. Retinal function and rhodopsin levels in autosomal dominant retinitis pigmentosa with rhodopsin mutations. Am J Ophthalmol 112, 256–271 (1991).
    1. Inglehearn C. F. et al.. A completed screen for mutations of the rhodopsin gene in a panel of patients with autosomal dominant retinitis pigmentosa. Hum Mol Genet 1, 41–45 (1992).
    1. McKie A. B. et al.. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet 10, 1555–1562 (2001).
    1. Zito I. et al.. Novel mutations of the RPGR gene in RP3 families. Hum Mutat 15, 386, doi: 10.1002/(SICI)1098-1004(200004)15:4<386::AID-HUMU23>;2-4 (2000).
    1. Bader I. et al.. X-linked retinitis pigmentosa: RPGR mutations in most families with definite X linkage and clustering of mutations in a short sequence stretch of exon ORF15. Invest Ophthalmol Vis Sci 44, 1458–1463 (2003).
    1. Freund P. R., Sergeev Y. V. & MacDonald I. M. Analysis of a large choroideremia dataset does not suggest a preference for inclusion of certain genotypes in future trials of gene therapy. Mol Genet Genomic Med 4, 14, doi: 10.1002/mgg3.208 (2016).

Source: PubMed

3
Sottoscrivi