Involvement of Astrocytes in Alzheimer's Disease from a Neuroinflammatory and Oxidative Stress Perspective

Rodrigo E González-Reyes, Mauricio O Nava-Mesa, Karina Vargas-Sánchez, Daniel Ariza-Salamanca, Laura Mora-Muñoz, Rodrigo E González-Reyes, Mauricio O Nava-Mesa, Karina Vargas-Sánchez, Daniel Ariza-Salamanca, Laura Mora-Muñoz

Abstract

Alzheimer disease (AD) is a frequent and devastating neurodegenerative disease in humans, but still no curative treatment has been developed. Although many explicative theories have been proposed, precise pathophysiological mechanisms are unknown. Due to the importance of astrocytes in brain homeostasis they have become interesting targets for the study of AD. Changes in astrocyte function have been observed in brains from individuals with AD, as well as in AD in vitro and in vivo animal models. The presence of amyloid beta (Aβ) has been shown to disrupt gliotransmission, neurotransmitter uptake, and alter calcium signaling in astrocytes. Furthermore, astrocytes express apolipoprotein E and are involved in the production, degradation and removal of Aβ. As well, changes in astrocytes that precede other pathological characteristics observed in AD, point to an early contribution of astroglia in this disease. Astrocytes participate in the inflammatory/immune responses of the central nervous system. The presence of Aβ activates different cell receptors and intracellular signaling pathways, mainly the advanced glycation end products receptor/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, responsible for the transcription of pro-inflammatory cytokines and chemokines in astrocytes. The release of these pro-inflammatory agents may induce cellular damage or even stimulate the production of Aβ in astrocytes. Additionally, Aβ induces the appearance of oxidative stress (OS) and production of reactive oxygen species and reactive nitrogen species in astrocytes, affecting among others, intracellular calcium levels, NADPH oxidase (NOX), NF-κB signaling, glutamate uptake (increasing the risk of excitotoxicity) and mitochondrial function. Excessive neuroinflammation and OS are observed in AD, and astrocytes seem to be involved in both. The Aβ/NF-κB interaction in astrocytes may play a central role in these inflammatory and OS changes present in AD. In this paper, we also discuss therapeutic measures highlighting the importance of astrocytes in AD pathology. Several new therapeutic approaches involving phenols (curcumin), phytoestrogens (genistein), neuroesteroids and other natural phytochemicals have been explored in astrocytes, obtaining some promising results regarding cognitive improvements and attenuation of neuroinflammation. Novel strategies comprising astrocytes and aimed to reduce OS in AD have also been proposed. These include estrogen receptor agonists (pelargonidin), Bambusae concretio Salicea, Monascin, and various antioxidatives such as resveratrol, tocotrienol, anthocyanins, and epicatechin, showing beneficial effects in AD models.

Keywords: Alzheimer’s disease; NF-κB pathway; astrocytes; neurodegeneration; neuroinflammation; oxidative stress.

Figures

FIGURE 1
FIGURE 1
Pathophysiological events involving astrocytes in AD. Schematic representation of the molecular mechanisms linking the NF-κB pathway activation to AD pathogenesis. OS, abnormal neuroinflammatory response, and excitotoxic neuronal damage are related to several pathways of astrocyte dysfunction. In black are the elements common to the three mechanisms, namely the Aβ/RAGE/NF-kB interaction. In blue are the elements related to neuroinflammation. In red the elements related to OS. In green the elements related to neurotoxicity/excitotoxicity. Aβ, amyloid-beta; RAGE, receptor for advanced glycation products; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; iNOS, inducible nitric oxide synthase; RNS, reactive nitrogen species, ROS, reactive oxygen species; LP, lipid peroxidation; TNFα, tumor necrosis factor alpha; IL, interleukin; GSH, glutathione; SOD, superoxide dismutase; EAAT, excitatory amino acid transporter; BACE1, beta-secretase 1; NMDA, N-methyl-D-aspartate receptor; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NADPH oxidase, nicotinamide adenine dinucleotide phosphate oxidase; Ca++, calcium; ABCC1, ATP-binding cassette subfamily C member 1.

References

    1. Abbas N., Bednar I., Mix E., Marie S., Paterson D., Ljungberg A., et al. (2002). Up-regulation of the inflammatory cytokines IFN-gamma and IL-12 and down-regulation of IL-4 in cerebral cortex regions of APP(SWE) transgenic mice. J. Neuroimmunol. 126 50–57.
    1. Abdul H. M., Sama M. A., Furman J. L., Mathis D. M., Beckett T. L., Weidner A. M., et al. (2009). Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J. Neurosci. 29 12957–12969. 10.1523/JNEUROSCI.1064-09.2009
    1. Abramov A. Y., Canevari L., Duchen M. R. (2003). Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci. 23 5088–5095.
    1. Abramov A. Y., Canevari L., Duchen M. R. (2004a). Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J. Neurosci. 24 565–575. 10.1523/JNEUROSCI.4042-03.2004
    1. Abramov A. Y., Canevari L., Duchen M. R. (2004b). Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochim. Biophys. Acta 1742 81–87. 10.1016/j.bbamcr.2004.09.006
    1. Acosta C., Anderson H. D., Anderson C. M. (2017). Astrocyte dysfunction in Alzheimer disease. J. Neurosci. Res. 95 2430–2447. 10.1002/jnr.24075
    1. Aguirre-Rueda D., Guerra-Ojeda S., Aldasoro M., Iradi A., Obrador E., Mauricio M. D., et al. (2015). WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid β1-42 effects on astrocytes in primary culture. PLOS ONE 10:e0122843. 10.1371/journal.pone.0122843
    1. Ahn K., Shelton C. C., Tian Y., Zhang X., Gilchrist M. L., Sisodia S. S., et al. (2010). Activation and intrinsic gamma-secretase activity of presenilin 1. Proc. Natl. Acad. Sci. U.S.A. 107 21435–21440. 10.1073/pnas.1013246107
    1. Aisen P. S., Thal L. J., Ferris S. H., Assaid C., Nessly M. L., Giuliani M. J., et al. (2008). Rofecoxib in patients with mild cognitive impairment: further analyses of data from a randomized, double-blind, trial. Curr. Alzheimer Res. 5 73–82.
    1. Akama K. T., Albanese C., Pestell R. G., Van Eldik L. J. (1998). Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFkappaB-dependent mechanism. Proc. Natl. Acad. Sci. U.S.A. 95 5795–5800.
    1. Akama K. T., Van Eldik L. J. (2000). Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta- and tumor necrosis factor-alpha (TNFalpha)-dependent, and involves a TNFalpha receptor-associated factor- and NFkappaB-inducing kinase-dependent signaling mechanism. J. Biol. Chem. 275 7918–7924.
    1. Alberdi E., Wyssenbach A., Alberdi M., Sánchez-Gómez M. V., Cavaliere F., Rodríguez J. J., et al. (2013). Ca2+-dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β-treated astrocytes and in a model of Alzheimer’s disease. Aging Cell 12 292–302. 10.1111/acel.12054
    1. Alzheimer’s Disease Anti-inflammatory Prevention Trial Research Group (2013). Results of a follow-up study to the randomized Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT). Alzheimers Dement. 9 714–723. 10.1016/j.jalz.2012.11.012
    1. Ansari M. A., Scheff S. W. (2010). Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J. Neuropathol. Exp. Neurol. 69 155–167. 10.1097/NEN.0b013e3181cb5af4
    1. Apelt J., Schliebs R. (2001). Beta-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res. 894 21–30.
    1. Arakawa R., Stenkrona P., Takano A., Nag S., Maior R. S., Halldin C. (2017). Test-retest reproducibility of [11C]-L-deprenyl-D2 binding to MAO-B in the human brain. EJNMMI Res. 7:54. 10.1186/s13550-017-0301-4
    1. Araque A., Parpura V., Sanzgiri R. P., Haydon P. G. (1998). Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10 2129–2142.
    1. Araque A., Parpura V., Sanzgiri R. P., Haydon P. G. (1999). Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22 208–215.
    1. Arispe N., Diaz J. C., Simakova O. (2007). Abeta ion channels. Prospects for treating Alzheimer’s disease with Abeta channel blockers. Biochim. Biophys. Acta 1768 1952–1965. 10.1016/j.bbamem.2007.03.014
    1. Arispe N., Doh M. (2002). Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AbetaP (1-40) and (1-42) peptides. FASEB J. 16 1526–1536. 10.1096/fj.02-0829com
    1. Askarova S., Yang X., Sheng W., Sun G. Y., Lee J. C.-M. (2011). Role of Aβ-receptor for advanced glycation endproducts interaction in oxidative stress and cytosolic phospholipase A2 activation in astrocytes and cerebral endothelial cells. Neuroscience 199 375–385. 10.1016/j.neuroscience.2011.09.038
    1. Ayasolla K., Khan M., Singh A. K., Singh I. (2004). Inflammatory mediator and beta-amyloid (25-35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radic. Biol. Med. 37 325–338. 10.1016/j.freeradbiomed.2004.04.007
    1. Bahniwal M., Little J. P., Klegeris A. (2017). High glucose enhances neurotoxicity and inflammatory cytokine secretion by stimulated human astrocytes. Curr. Alzheimer Res. 14 731–741. 10.2174/1567205014666170117104053
    1. Bak L. K., Schousboe A., Waagepetersen H. S. (2006). The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem. 98 641–653. 10.1111/j.1471-4159.2006.03913.x
    1. Bales K. R., Du Y., Dodel R. C., Yan G. M., Hamilton-Byrd E., Paul S. M. (1998). The NF-kappaB/Rel family of proteins mediates Abeta-induced neurotoxicity and glial activation. Brain Res. Mol. Brain Res. 57 63–72.
    1. Batarseh Y. S., Duong Q.-V., Mousa Y. M., Al Rihani S. B., Elfakhri K., Kaddoumi A. (2016). Amyloid-β and astrocytes interplay in amyloid-β related disorders. Int. J. Mol. Sci. 17:338. 10.3390/ijms17030338
    1. Beeri M. S., Schmeidler J., Lesser G. T., Maroukian M., West R., Leung S., et al. (2012). Corticosteroids, but not NSAIDs, are associated with less Alzheimer neuropathology. Neurobiol. Aging 33 1258–1264. 10.1016/j.neurobiolaging.2011.02.011
    1. Ben Haim L., Rowitch D. H. (2017). Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci. 18 31–41. 10.1038/nrn.2016.159
    1. Bhat A. H., Dar K. B., Anees S., Zargar M. A., Masood A., Sofi M. A., et al. (2015). Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharmacother. 74 101–110. 10.1016/j.biopha.2015.07.025
    1. Blasko I., Veerhuis R., Stampfer-Kountchev M., Saurwein-Teissl M., Eikelenboom P., Grubeck-Loebenstein B. (2000). Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol. Dis. 7 682–689. 10.1006/nbdi.2000.0321
    1. Bonet-Costa V., Herranz-Pérez V., Blanco-Gandía M., Mas-Bargues C., Inglés M., Garcia-Tarraga P., et al. (2016). Clearing amyloid-β through PPARγ/ApoE activation by genistein is a treatment of experimental Alzheimer’s disease. J. Alzheimers Dis. 51 701–711. 10.3233/JAD-151020
    1. Bouvier D. S., Jones E. V., Quesseveur G., Davoli M. A., A Ferreira T., Quirion R., et al. (2016). High resolution dissection of reactive glial nets in Alzheimer’s disease. Sci. Rep. 6:24544. 10.1038/srep24544
    1. Bronzuoli M. R., Iacomino A., Steardo L., Scuderi C. (2016). Targeting neuroinflammation in Alzheimer’s disease. J. Inflamm. Res. 9 199–208. 10.2147/JIR.S86958
    1. Brown G. C. (2007). Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem. Soc. Trans. 35 1119–1121. 10.1042/BST0351119
    1. Bungart B. L., Dong L., Sobek D., Sun G. Y., Yao G., Lee J. C.-M. (2014). Nanoparticle-emitted light attenuates amyloid-β-induced superoxide and inflammation in astrocytes. Nanomedicine 10 15–17. 10.1016/j.nano.2013.10.007
    1. Butterfield D. A., Castegna A., Lauderback C. M., Drake J. (2002). Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging 23 655–664.
    1. Butterfield D. A., Swomley A. M., Sultana R. (2013). Amyloid β-peptide (1–42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid. Redox Signal. 19 823–835. 10.1089/ars.2012.5027
    1. Carrero I., Gonzalo M. R., Martin B., Sanz-Anquela J. M., Arévalo-Serrano J., Gonzalo-Ruiz A. (2012). Oligomers of β-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1β, tumour necrosis factor-α, and a nuclear factor κ-B mechanism in the rat brain. Exp. Neurol. 236 215–227. 10.1016/j.expneurol.2012.05.004
    1. Carroll C. M., Li Y.-M. (2016). Physiological and pathological roles of the γ-secretase complex. Brain Res. Bull. 126 199–206. 10.1016/j.brainresbull.2016.04.019
    1. Carter S. F., Schöll M., Almkvist O., Wall A., Engler H., Långström B., et al. (2012). Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J. Nucl. Med. 53 37–46. 10.2967/jnumed.110.087031
    1. Caselli R. J., Beach T. G., Knopman D. S., Graff-Radford N. R. (2017). Alzheimer disease: scientific breakthroughs and translational challenges. Mayo Clin. Proc. 92 978–994. 10.1016/j.mayocp.2017.02.011
    1. Castegna A., Thongboonkerd V., Klein J. B., Lynn B., Markesbery W. R., Butterfield D. A. (2003). Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J. Neurochem. 85 1394–1401.
    1. Chakraborty A., de Wit N. M., van der Flier W. M., de Vries H. E. (2017). The blood brain barrier in Alzheimer’s disease. Vasc. Pharmacol. 89 12–18. 10.1016/j.vph.2016.11.008
    1. Chang Y.-T., Chang W.-N., Tsai N.-W., Huang C.-C., Kung C.-T., Su Y.-J., et al. (2014). The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: a systematic review. Biomed Res. Int. 2014:182303. 10.1155/2014/182303
    1. Chiarini A., Armato U., Gardenal E., Gui L., Dal Prà I. (2017). Amyloid β-exposed human astrocytes overproduce phospho-tau and overrelease it within exosomes, effects suppressed by calcilytic NPS 2143-further implications for Alzheimer’s therapy. Front. Neurosci. 11:217 10.3389/fnins.2017.00217
    1. Choi S. S., Lee H. J., Lim I., Satoh J., Kim S. U. (2014). Human astrocytes: secretome profiles of cytokines and chemokines. PLOS ONE 9:e92325. 10.1371/journal.pone.0092325
    1. Cirillo C., Capoccia E., Iuvone T., Cuomo R., Sarnelli G., Steardo L., et al. (2015). S100B inhibitor pentamidine attenuates reactive gliosis and reduces neuronal loss in a mouse model of Alzheimer’s disease. Biomed Res. Int. 2015:508342. 10.1155/2015/508342
    1. Cohen-Gadol A. A., Pan J. W., Kim J. H., Spencer D. D., Hetherington H. H. (2004). Mesial temporal lobe epilepsy: a proton magnetic resonance spectroscopy study and a histopathological analysis. J. Neurosurg. 101 613–620. 10.3171/jns.2004.101.4.0613
    1. Cole G. M., Teter B., Frautschy S. A. (2007). Neuroprotective effects of curcumin. Adv. Exp. Med. Biol. 595 197–212. 10.1007/978-0-387-46401-5_8
    1. Colombo E., Farina C. (2016). Astrocytes: key regulators of neuroinflammation. Trends Immunol. 37 608–620. 10.1016/j.it.2016.06.006
    1. Cudaback E., Jorstad N. L., Yang Y., Montine T. J., Keene C. D. (2014). Therapeutic implications of the prostaglandin pathway in Alzheimer’s disease. Biochem. Pharmacol. 88 565–572. 10.1016/j.bcp.2013.12.014
    1. Cuevas E., Limón D., Pérez-Severiano F., Díaz A., Ortega L., Zenteno E., et al. (2009). Antioxidant effects of epicatechin on the hippocampal toxicity caused by amyloid-beta 25-35 in rats. Eur. J. Pharmacol. 616 122–127. 10.1016/j.ejphar.2009.06.013
    1. Dá Mesquita S., Ferreira A. C., Sousa J. C., Correia-Neves M., Sousa N., Marques F. (2016). Insights on the pathophysiology of Alzheimer’s disease: the crosstalk between amyloid pathology, neuroinflammation and the peripheral immune system. Neurosci. Biobehav. Rev. 68 547–562. 10.1016/j.neubiorev.2016.06.014
    1. Dabir D. V., Trojanowski J. Q., Richter-Landsberg C., Lee V. M.-Y., Forman M. S. (2004). Expression of the small heat-shock protein alphaB-crystallin in tauopathies with glial pathology. Am. J. Pathol. 164 155–166.
    1. Dal Prà I., Chiarini A., Armato U. (2015). Antagonizing amyloid-β/calcium-sensing receptor signaling in human astrocytes and neurons: a key to halt Alzheimer’s disease progression? Neural Regen. Res. 10 213–218. 10.4103/1673-5374.152373
    1. Dasuri K., Zhang L., Keller J. N. (2013). Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic. Biol. Med. 62 170–185. 10.1016/j.freeradbiomed.2012.09.016
    1. de Vivo L., Melone M., Rothstein J. D., Conti F. (2010). GLT-1 promoter activity in astrocytes and neurons of mouse hippocampus and somatic sensory cortex. Front. Neuroanat. 3:31. 10.3389/neuro.05.031.2009
    1. Del Bo R., Angeretti N., Lucca E., De Simoni M. G., Forloni G. (1995). Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and beta-amyloid production in cultures. Neurosci. Lett. 188 70–74.
    1. Delekate A., Füchtemeier M., Schumacher T., Ulbrich C., Foddis M., Petzold G. C. (2014). Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model. Nat. Commun. 5:5422. 10.1038/ncomms6422
    1. Desgranges B., Baron J. C., de la Sayette V., Petit-Taboué M. C., Benali K., Landeau B., et al. (1998). The neural substrates of memory systems impairment in Alzheimer’s disease. A PET study of resting brain glucose utilization. Brain 121(Pt 4) 611–631.
    1. Ding Q., Keller J. N. (2005). Evaluation of rage isoforms, ligands, and signaling in the brain. Biochim. Biophys. Acta 1746 18–27. 10.1016/j.bbamcr.2005.08.006
    1. Ding S., Fellin T., Zhu Y., Lee S.-Y., Auberson Y. P., Meaney D. F., et al. (2007). Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J. Neurosci. 27 10674–10684. 10.1523/JNEUROSCI.2001-07.2007
    1. Diniz L. P., Tortelli V., Matias I., Morgado J., Bérgamo Araujo A. P., Melo H. M., et al. (2017). Astrocyte transforming growth factor Beta 1 protects synapses against Aβ oligomers in Alzheimer’s disease model. J. Neurosci. 37 6797–6809. 10.1523/JNEUROSCI.3351-16.2017
    1. Dorey E., Bamji-Mirza M., Najem D., Li Y., Liu H., Callaghan D., et al. (2017). Apolipoprotein E isoforms differentially regulate Alzheimer’s disease and amyloid-β-induced inflammatory response in vivo and in vitro. J. Alzheimers Dis. 57 1265–1279. 10.3233/JAD-160133
    1. Dorfman V. B., Pasquini L., Riudavets M., López-Costa J. J., Villegas A., Troncoso J. C., et al. (2010). Differential cerebral deposition of IDE and NEP in sporadic and familial Alzheimer’s disease. Neurobiol. Aging 31 1743–1757. 10.1016/j.neurobiolaging.2008.09.016
    1. Duchen M. R. (2000). Mitochondria and calcium: from cell signalling to cell death. J. Physiol. 529(Pt 1) 57–68.
    1. Echeverria V., Yarkov A., Aliev G. (2016). Positive modulators of the α7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer’s disease. Prog. Neurobiol. 144 142–157. 10.1016/j.pneurobio.2016.01.002
    1. Ekblom J., Jossan S. S., Bergström M., Oreland L., Walum E., Aquilonius S. M. (1993). Monoamine oxidase-B in astrocytes. Glia 8 122–132. 10.1002/glia.440080208
    1. Ekblom J., Jossan S. S., Oreland L., Walum E., Aquilonius S. M. (1994). Reactive gliosis and monoamine oxidase B. J. Neural Transm. Suppl. 41 253–258.
    1. Esler W. P., Wolfe M. S. (2001). A portrait of Alzheimer secretases–new features and familiar faces. Science 293 1449–1454. 10.1126/science.1064638
    1. Falkowska A., Gutowska I., Goschorska M., Nowacki P., Chlubek D., Baranowska-Bosiacka I. (2015). Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int. J. Mol. Sci. 16 25959–25981. 10.3390/ijms161125939
    1. Farfara D., Lifshitz V., Frenkel D. (2008). Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer’s disease. J. Cell. Mol. Med. 12 762–780. 10.1111/j.1582-4934.2008.00314.x
    1. Fellin T., Pascual O., Gobbo S., Pozzan T., Haydon P. G., Carmignoto G. (2004). Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43 729–743. 10.1016/j.neuron.2004.08.011
    1. Fiandaca M. S., Mapstone M. E., Cheema A. K., Federoff H. J. (2014). The critical need for defining preclinical biomarkers in Alzheimer’s disease. Alzheimers Dement. 10 S196–S212. 10.1016/j.jalz.2014.04.015
    1. Fields R. D., Araque A., Johansen-Berg H., Lim S.-S., Lynch G., Nave K.-A., et al. (2014). Glial biology in learning and cognition. Neuroscientist 20 426–431. 10.1177/1073858413504465
    1. Finsterwald C., Magistretti P. J., Lengacher S. (2015). Astrocytes: new targets for the treatment of neurodegenerative diseases. Curr. Pharm. Des. 21 3570–3581.
    1. Floyd R. A., Hensley K. (2002). Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23 795–807.
    1. Forman M. S., Lal D., Zhang B., Dabir D. V., Swanson E., Lee V. M.-Y., et al. (2005). Transgenic mouse model of tau pathology in astrocytes leading to nervous system degeneration. J. Neurosci. 25 3539–3550. 10.1523/JNEUROSCI.0081-05.2005
    1. Fowler K. D., Funt J. M., Artyomov M. N., Zeskind B., Kolitz S. E., Towfic F. (2015). Leveraging existing data sets to generate new insights into Alzheimer’s disease biology in specific patient subsets. Sci. Rep. 5:14324. 10.1038/srep14324
    1. Frankish H., Horton R. (2017). Prevention and management of dementia: a priority for public health. Lancet 10.1016/S0140-6736(17)31756-7 [Epub ahead of print].
    1. Friedland-Leuner K., Stockburger C., Denzer I., Eckert G. P., Müller W. E. (2014). Mitochondrial dysfunction: cause and consequence of Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 127 183–210. 10.1016/B978-0-12-394625-6.00007-6
    1. Furuta A., Price D. L., Pardo C. A., Troncoso J. C., Xu Z. S., Taniguchi N., et al. (1995). Localization of superoxide dismutases in Alzheimer’s disease and Down’s syndrome neocortex and hippocampus. Am. J. Pathol. 146 357–367.
    1. Gajardo-Gómez R., Labra V. C., Maturana C. J., Shoji K. F., Santibañez C. A., Sáez J. C., et al. (2017). Cannabinoids prevent the amyloid β-induced activation of astroglial hemichannels: a neuroprotective mechanism. Glia 65 122–137. 10.1002/glia.23080
    1. Gandhi S., Abramov A. Y. (2012). Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev. 2012:428010. 10.1155/2012/428010
    1. García-Blanco A., Baquero M., Vento M., Gil E., Bataller L., Cháfer-Pericás C. (2017). Potential oxidative stress biomarkers of mild cognitive impairment due to Alzheimer disease. J. Neurol. Sci. 373 295–302. 10.1016/j.jns.2017.01.020
    1. Garwood C. J., Pooler A. M., Atherton J., Hanger D. P., Noble W. (2011). Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis. 2:e167. 10.1038/cddis.2011.50
    1. Gitter B. D., Cox L. M., Rydel R. E., May P. C. (1995). Amyloid beta peptide potentiates cytokine secretion by interleukin-1 beta-activated human astrocytoma cells. Proc. Natl. Acad. Sci. U.S.A. 92 10738–10741.
    1. González-Reyes R. E., Aliev G., Ávila-Rodrigues M., Barreto G. E. (2016). Alterations in glucose metabolism on cognition: a possible link between diabetes and dementia. Curr. Pharm. Des. 22 812–818.
    1. González-Reyes R. E., Graciela Rubiano M. (2016). Astrocyte’s RAGE: more than just a question of mood. Cent. Nerv. Syst. Agents Med. Chem. 10.2174/1871524916999160505105121 [Epub ahead of print].
    1. Grolla A. A., Fakhfouri G., Balzaretti G., Marcello E., Gardoni F., Canonico P. L., et al. (2013). Aβ leads to Ca2+ signaling alterations and transcriptional changes in glial cells. Neurobiol. Aging 34 511–522. 10.1016/j.neurobiolaging.2012.05.005
    1. Guerriero F., Sgarlata C., Francis M., Maurizi N., Faragli A., Perna S., et al. (2016). Neuroinflammation, immune system and Alzheimer disease: searching for the missing link. Aging Clin. Exp. Res. 29 821–831. 10.1007/s40520-016-0637-z
    1. Gulyás B., Pavlova E., Kása P., Gulya K., Bakota L., Várszegi S., et al. (2011). Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem. Int. 58 60–68. 10.1016/j.neuint.2010.10.013
    1. Halassa M. M., Fellin T., Haydon P. G. (2007). The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol. Med. 13 54–63. 10.1016/j.molmed.2006.12.005
    1. Halliwell B. (2012). Free radicals and antioxidants: updating a personal view. Nutr. Rev. 70 257–265. 10.1111/j.1753-4887.2012.00476.x
    1. Haughey N. J., Mattson M. P. (2003). Alzheimer’s amyloid beta-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes. Neuromol. Med. 3 173–180.
    1. He Y., Jackman N. A., Thorn T. L., Vought V. E., Hewett S. J. (2015). Interleukin-1β protects astrocytes against oxidant-induced injury via an NF-κB-dependent upregulation of glutathione synthesis. Glia 63 1568–1580. 10.1002/glia.22828
    1. Hertz L. (2013). The glutamate-glutamine (GABA) cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Front. Endocrinol. 4:59. 10.3389/fendo.2013.00059
    1. Hofmann M. A., Drury S., Fu C., Qu W., Taguchi A., Lu Y., et al. (1999). RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97 889–901.
    1. Hong Y., Wang X., Sun S., Xue G., Li J., Hou Y. (2016). Progesterone exerts neuroprotective effects against Aβ-induced neuroinflammation by attenuating ER stress in astrocytes. Int. Immunopharmacol. 33 83–89. 10.1016/j.intimp.2016.02.002
    1. Hori O., Brett J., Slattery T., Cao R., Zhang J., Chen J. X., et al. (1995). The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J. Biol. Chem. 270 25752–25761.
    1. Hou L., Liu Y., Wang X., Ma H., He J., Zhang Y., et al. (2011). The effects of amyloid-β42 oligomer on the proliferation and activation of astrocytes in vitro. In Vitro Cell. Dev. Biol. Anim. 47 573–580. 10.1007/s11626-011-9439-y
    1. Hsieh H.-L., Yang C.-M. (2013). Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res. Int. 2013:e484613. 10.1155/2013/484613
    1. Hu J., Akama K. T., Krafft G. A., Chromy B. A., Van Eldik L. J. (1998). Amyloid-beta peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res. 785 195–206.
    1. Huynh R. A., Mohan C. (2017). Alzheimer’s disease: biomarkers in the genome, blood, and cerebrospinal fluid. Front. Neurol. 8:102 10.3389/fneur.2017.00102
    1. Ibrahim N. F., Yanagisawa D., Durani L. W., Hamezah H. S., Damanhuri H. A., Wan Ngah W. Z., et al. (2017). Tocotrienol-rich fraction modulates amyloid pathology and improves cognitive function in AβPP/PS1 mice. J. Alzheimers Dis. 55 597–612. 10.3233/JAD-160685
    1. Iglesias J., Morales L., Barreto G. E. (2017). Metabolic and inflammatory adaptation of reactive astrocytes: role of PPARs. Mol. Neurobiol. 54 2518–2538. 10.1007/s12035-016-9833-2
    1. Ishii T., Takanashi Y., Sugita K., Miyazawa M., Yanagihara R., Yasuda K., et al. (2017). Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain. Aging Cell 16 39–51. 10.1111/acel.12523
    1. Islam M. T. (2017). Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res. 39 73–82. 10.1080/01616412.2016.1251711
    1. Jarosz-Griffiths H. H., Noble E., Rushworth J. V., Hooper N. M. (2016). Amyloid-β receptors: the good, the bad, and the prion protein. J. Biol. Chem. 291 3174–3183. 10.1074/jbc.R115.702704
    1. Jeong J.-C., Yoon C.-H., Lee W.-H., Park K.-K., Chang Y.-C., Choi Y. H., et al. (2005). Effects of Bambusae concretio Salicea (Chunchukhwang) on amyloid beta-induced cell toxicity and antioxidative enzymes in cultured rat neuronal astrocytes. J. Ethnopharmacol. 98 259–266. 10.1016/j.jep.2004.12.034
    1. Jiang T., Sun Q., Chen S. (2016). Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol. 147 1–19. 10.1016/j.pneurobio.2016.07.005
    1. Jo S., Yarishkin O., Hwang Y. J., Chun Y. E., Park M., Woo D. H., et al. (2014). GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat. Med. 20 886–896. 10.1038/nm.3639
    1. Jones R. S., Minogue A. M., Connor T. J., Lynch M. A. (2013). Amyloid-β-induced astrocytic phagocytosis is mediated by CD36, CD47 and RAGE. J. Neuroimmune Pharmacol. 8 301–311. 10.1007/s11481-012-9427-3
    1. Jossan S. S., Gillberg P. G., Gottfries C. G., Karlsson I., Oreland L. (1991). Monoamine oxidase B in brains from patients with Alzheimer’s disease: a biochemical and autoradiographical study. Neuroscience 45 1–12.
    1. Jourdain P., Bergersen L. H., Bhaukaurally K., Bezzi P., Santello M., Domercq M., et al. (2007). Glutamate exocytosis from astrocytes controls synaptic strength. Nat. Neurosci. 10 331–339. 10.1038/nn1849
    1. Kawahara M., Kuroda Y. (2001). Intracellular calcium changes in neuronal cells induced by Alzheimer’s beta-amyloid protein are blocked by estradiol and cholesterol. Cell. Mol. Neurobiol. 21 1–13.
    1. Killin L. O. J., Starr J. M., Shiue I. J., Russ T. C. (2016). Environmental risk factors for dementia: a systematic review. BMC Geriatr. 16:175. 10.1186/s12877-016-0342-y
    1. Kim Y. E., Hwang C. J., Lee H. P., Kim C. S., Son D. J., Ham Y. W., et al. (2017). Inhibitory effect of punicalagin on lipopolysaccharide-induced neuroinflammation, oxidative stress and memory impairment via inhibition of nuclear factor-kappaB. Neuropharmacology 117 21–32. 10.1016/j.neuropharm.2017.01.025
    1. Kisler K., Nelson A. R., Montagne A., Zlokovic B. V. (2017). Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18 419–434. 10.1038/nrn.2017.48
    1. Koistinaho M., Lin S., Wu X., Esterman M., Koger D., Hanson J., et al. (2004). Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat. Med. 10 719–726. 10.1038/nm1058
    1. Kommers T., Rodnight R., Boeck C., Vendite D., Oliveira D., Horn J., et al. (2002). Phosphorylation of glial fibrillary acidic protein is stimulated by glutamate via NMDA receptors in cortical microslices and in mixed neuronal/glial cell cultures prepared from the cerebellum. Brain Res. Dev. Brain Res. 137 139–148.
    1. Komori T. (1999). Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick’s disease. Brain Pathol. 9 663–679.
    1. Krstic D., Madhusudan A., Doehner J., Vogel P., Notter T., Imhof C., et al. (2012). Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J. Neuroinflammation 9:151. 10.1186/1742-2094-9-151
    1. Kumlien E., Hilton-Brown P., Spännare B., Gillberg P. G. (1992). In vitro quantitative autoradiography of [3H]-L-deprenyl and [3H]-PK 11195 binding sites in human epileptic hippocampus. Epilepsia 33 610–617.
    1. Lahiri D. K., Chen D., Vivien D., Ge Y.-W., Greig N. H., Rogers J. T. (2003). Role of cytokines in the gene expression of amyloid beta-protein precursor: identification of a 5’-UTR-binding nuclear factor and its implications in Alzheimer’s disease. J. Alzheimers Dis. 5 81–90.
    1. Lalo U., Pankratov Y., Kirchhoff F., North R. A., Verkhratsky A. (2006). NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J. Neurosci. 26 2673–2683. 10.1523/JNEUROSCI.4689-05.2006
    1. Lanoiselée H.-M., Nicolas G., Wallon D., Rovelet-Lecrux A., Lacour M., Rousseau S., et al. (2017). APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases. PLOS Med. 14:e1002270. 10.1371/journal.pmed.1002270
    1. Laurent C., Dorothée G., Hunot S., Martin E., Monnet Y., Duchamp M., et al. (2017). Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain 140 184–200. 10.1093/brain/aww270
    1. Le Prince G., Delaere P., Fages C., Lefrançois T., Touret M., Salanon M., et al. (1995). Glutamine synthetase (GS) expression is reduced in senile dementia of the Alzheimer type. Neurochem. Res. 20 859–862.
    1. Lee J. W., Lee Y. K., Yuk D. Y., Choi D. Y., Ban S. B., Oh K. W., et al. (2008). Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J. Neuroinflammation 5:37. 10.1186/1742-2094-5-37
    1. Lee L., Kosuri P., Arancio O. (2014). Picomolar amyloid-β peptides enhance spontaneous astrocyte calcium transients. J. Alzheimers Dis. 38 49–62. 10.3233/JAD-130740
    1. Lee M.-C., Ting K. K., Adams S., Brew B. J., Chung R., Guillemin G. J. (2010). Characterisation of the expression of NMDA receptors in human astrocytes. PLOS ONE 5:e14123. 10.1371/journal.pone.0014123
    1. Lemoine L., Saint-Aubert L., Nennesmo I., Gillberg P.-G., Nordberg A. (2017). Cortical laminar tau deposits and activated astrocytes in Alzheimer’s disease visualised by (3)H-THK5117 and (3)H-deprenyl autoradiography. Sci. Rep. 7:45496. 10.1038/srep45496
    1. Lesné S., Docagne F., Gabriel C., Liot G., Lahiri D. K., Buée L., et al. (2003). Transforming growth factor-beta 1 potentiates amyloid-beta generation in astrocytes and in transgenic mice. J. Biol. Chem. 278 18408–18418. 10.1074/jbc.M300819200
    1. Levitt P., Pintar J. E., Breakefield X. O. (1982). Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc. Natl. Acad. Sci. U.S.A. 79 6385–6389.
    1. Li J.-M., Zhang Y., Tang L., Chen Y.-H., Gao Q., Bao M.-H., et al. (2016). Effects of triptolide on hippocampal microglial cells and astrocytes in the APP/PS1 double transgenic mouse model of Alzheimer’s disease. Neural Regen. Res. 11 1492–1498. 10.4103/1673-5374.191224
    1. Liao Y.-F., Wang B.-J., Cheng H.-T., Kuo L.-H., Wolfe M. S. (2004). Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J. Biol. Chem. 279 49523–49532. 10.1074/jbc.M402034200
    1. Libro R., Giacoppo S., Soundara Rajan T., Bramanti P., Mazzon E. (2016). Natural phytochemicals in the treatment and prevention of dementia: an overview. Molecules 21:518. 10.3390/molecules21040518
    1. Liddelow S. A., Guttenplan K. A., Clarke L. E., Bennett F. C., Bohlen C. J., Schirmer L., et al. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541 481–487. 10.1038/nature21029
    1. Lim D., Iyer A., Ronco V., Grolla A. A., Canonico P. L., Aronica E., et al. (2013). Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB. Glia 61 1134–1145. 10.1002/glia.22502
    1. Lim G. P., Chu T., Yang F., Beech W., Frautschy S. A., Cole G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21 8370–8377.
    1. Lindberg C., Selenica M.-L. B., Westlind-Danielsson A., Schultzberg M. (2005). Beta-amyloid protein structure determines the nature of cytokine release from rat microglia. J. Mol. Neurosci. 27 1–12.
    1. Liu M.-H., Lin Y.-S., Sheu S.-Y., Sun J.-S. (2009). Anti-inflammatory effects of daidzein on primary astroglial cell culture. Nutr. Neurosci. 12 123–134. 10.1179/147683009X423274
    1. Liu S., Wu H., Xue G., Ma X., Wu J., Qin Y., et al. (2013). Metabolic alteration of neuroactive steroids and protective effect of progesterone in Alzheimer’s disease-like rats. Neural Regen. Res. 8 2800–2810. 10.3969/j.issn.1673-5374.2013.30.002
    1. Liu Z.-J., Li Z.-H., Liu L., Tang W.-X., Wang Y., Dong M.-R., et al. (2016). Curcumin attenuates beta-amyloid-induced neuroinflammation via activation of peroxisome proliferator-activated receptor-gamma function in a rat model of Alzheimer’s disease. Front. Pharmacol. 7:261. 10.3389/fphar.2016.00261
    1. Lue L. F., Brachova L., Civin W. H., Rogers J. (1996). Inflammation, A beta deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J. Neuropathol. Exp. Neurol. 55 1083–1088.
    1. Lüth H. J., Holzer M., Gärtner U., Staufenbiel M., Arendt T. (2001). Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer’s disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology. Brain Res. 913 57–67.
    1. Maeda M., Takagi H., Hattori H., Matsuzaki T. (1997). Localization of manganese superoxide dismutase in the cerebral cortex and hippocampus of Alzheimer-type senile dementia. Osaka City Med. J. 43 1–5.
    1. Magistretti P. J. (2006). Neuron-glia metabolic coupling and plasticity. J. Exp. Biol. 209 2304–2311. 10.1242/jeb.02208
    1. Magistretti P. J., Allaman I. (2015). A cellular perspective on brain energy metabolism and functional imaging. Neuron 86 883–901. 10.1016/j.neuron.2015.03.035
    1. Magistretti P. J., Pellerin L. (1999). Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol. Sci. 14 177–182.
    1. Makitani K., Nakagawa S., Izumi Y., Akaike A., Kume T. (2017). Inhibitory effect of donepezil on bradykinin-induced increase in the intracellular calcium concentration in cultured cortical astrocytes. J. Pharmacol. Sci. 134 37–44. 10.1016/j.jphs.2017.03.008
    1. Marcu K. B., Otero M., Olivotto E., Borzi R. M., Goldring M. B. (2010). NF-kappaB signaling: multiple angles to target OA. Curr. Drug Targets 11 599–613.
    1. Maruszak A., Żekanowski C. (2011). Mitochondrial dysfunction and Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 35 320–330. 10.1016/j.pnpbp.2010.07.004
    1. Masilamoni J. G., Jesudason E. P., Jesudoss K. S., Murali J., Paul S. F. D., Jayakumar R. (2005a). Role of fibrillar Abeta25-35 in the inflammation induced rat model with respect to oxidative vulnerability. Free Radic. Res. 39 603–612. 10.1080/10715760500117373
    1. Masilamoni J. G., Vignesh S., Kirubagaran R., Jesudason E. P., Jayakumar R. (2005b). The neuroprotective efficacy of alpha-crystallin against acute inflammation in mice. Brain Res. Bull. 67 235–241. 10.1016/j.brainresbull.2005.07.002
    1. Matos M., Augusto E., Machado N. J., dos Santos-Rodrigues A., Cunha R. A., Agostinho P. (2012). Astrocytic adenosine A2A receptors control the amyloid-β peptide-induced decrease of glutamate uptake. J. Alzheimers Dis. 31 555–567. 10.3233/JAD-2012-120469
    1. McGeer P. L., McGeer E., Rogers J., Sibley J. (1990). Anti-inflammatory drugs and Alzheimer disease. Lancet 335:1037.
    1. Mehlhorn G., Hollborn M., Schliebs R. (2000). Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int. J. Dev. Neurosci. 18 423–431.
    1. Mémet S. (2006). NF-kappaB functions in the nervous system: from development to disease. Biochem. Pharmacol. 72 1180–1195. 10.1016/j.bcp.2006.09.003
    1. Mendez M. F. (2017). Early-onset Alzheimer disease. Neurol. Clin. 35 263–281. 10.1016/j.ncl.2017.01.005
    1. Merlini M., Meyer E. P., Ulmann-Schuler A., Nitsch R. M. (2011). Vascular β-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAβ mice. Acta Neuropathol. 122 293–311. 10.1007/s00401-011-0834-y
    1. Millington C., Sonego S., Karunaweera N., Rangel A., Aldrich-Wright J. R., Campbell I. L., et al. (2014). Chronic neuroinflammation in Alzheimer’s disease: new perspectives on animal models and promising candidate drugs. Biomed Res. Int. 2014:309129. 10.1155/2014/309129
    1. Minter M. R., Taylor J. M., Crack P. J. (2016). The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J. Neurochem. 136 457–474. 10.1111/jnc.13411
    1. Mitew S., Kirkcaldie M. T. K., Dickson T. C., Vickers J. C. (2013). Altered synapses and gliotransmission in Alzheimer’s disease and AD model mice. Neurobiol. Aging 34 2341–2351. 10.1016/j.neurobiolaging.2013.04.010
    1. Mohamed A., Posse de Chaves E. (2011). Aβ internalization by neurons and glia. Int. J. Alzheimers Dis. 2011:127984. 10.4061/2011/127984
    1. Morgan M. J., Liu Z. (2011). Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21 103–115. 10.1038/cr.2010.178
    1. Morgello S., Uson R. R., Schwartz E. J., Haber R. S. (1995). The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes. Glia 14 43–54. 10.1002/glia.440140107
    1. Mosconi L., Pupi A., De Leon M. J. (2008). Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1147 180–195. 10.1196/annals.1427.007
    1. Mosconi L., Sorbi S., de Leon M. J., Li Y., Nacmias B., Myoung P. S., et al. (2006). Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. J. Nucl. Med. 47 1778–1786.
    1. Mosconi L., Tsui W.-H., De Santi S., Li J., Rusinek H., Convit A., et al. (2005). Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 64 1860–1867. 10.1212/01.WNL.0000163856.13524.08
    1. Mota S. I., Ferreira I. L., Rego A. C. (2014). Dysfunctional synapse in Alzheimer’s disease - A focus on NMDA receptors. Neuropharmacology 76(Pt A) 16–26. 10.1016/j.neuropharm.2013.08.013
    1. Mulder S. D., Veerhuis R., Blankenstein M. A., Nielsen H. M. (2012). The effect of amyloid associated proteins on the expression of genes involved in amyloid-β clearance by adult human astrocytes. Exp. Neurol. 233 373–379. 10.1016/j.expneurol.2011.11.001
    1. Müller W. E., Eckert A., Kurz C., Eckert G. P., Leuner K. (2010). Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer’s disease–therapeutic aspects. Mol. Neurobiol. 41 159–171. 10.1007/s12035-010-8141-5
    1. Mutis J. A., Rodríguez J. H., Nava-Mesa M. O. (2017). Rapidly progressive cognitive impairment with neuropsychiatric symptoms as the initial manifestation of status epilepticus. Epilepsy Behav. Case Rep. 7 20–23. 10.1016/j.ebcr.2016.11.002
    1. Nakajima S., Kitamura M. (2013). Bidirectional regulation of NF-κB by reactive oxygen species: a role of unfolded protein response. Free Radic. Biol. Med. 65 162–174. 10.1016/j.freeradbiomed.2013.06.020
    1. Nava-Mesa M. O., Jiménez-Díaz L., Yajeya J., Navarro-Lopez J. D. (2014). GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease. Front. Cell. Neurosci. 8:167 10.3389/fncel.2014.00167
    1. Nilsen L. H., Witter M. P., Sonnewald U. (2014). Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer’s disease. J. Cereb. Blood Flow Metab. 34 906–914. 10.1038/jcbfm.2014.37
    1. Norris C. M., Kadish I., Blalock E. M., Chen K.-C., Thibault V., Porter N. M., et al. (2005). Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models. J. Neurosci. 25 4649–4658. 10.1523/JNEUROSCI.0365-05.2005
    1. Nunomura A., Tamaoki T., Motohashi N., Nakamura M., McKeel D. W., Tabaton M., et al. (2012). The earliest stage of cognitive impairment in transition from normal aging to Alzheimer disease is marked by prominent RNA oxidation in vulnerable neurons. J. Neuropathol. Exp. Neurol. 71 233–241. 10.1097/NEN.0b013e318248e614
    1. Ojala J., Alafuzoff I., Herukka S.-K., van Groen T., Tanila H., Pirttilä T. (2009). Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol. Aging 30 198–209. 10.1016/j.neurobiolaging.2007.06.006
    1. Palygin O., Lalo U., Pankratov Y. (2011). Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br. J. Pharmacol. 163 1755–1766. 10.1111/j.1476-5381.2011.01374.x
    1. Palygin O., Lalo U., Verkhratsky A., Pankratov Y. (2010). Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes. Cell Calcium 48 225–231. 10.1016/j.ceca.2010.09.004
    1. Panatier A., Theodosis D. T., Mothet J.-P., Touquet B., Pollegioni L., Poulain D. A., et al. (2006). Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125 775–784. 10.1016/j.cell.2006.02.051
    1. Parameshwaran K., Dhanasekaran M., Suppiramaniam V. (2008). Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp. Neurol. 210 7–13. 10.1016/j.expneurol.2007.10.008
    1. Parfenova H., Tcheranova D., Basuroy S., Fedinec A. L., Liu J., Leffler C. W. (2012). Functional role of astrocyte glutamate receptors and carbon monoxide in cerebral vasodilation response to glutamate. Am. J. Physiol. Heart Circ. Physiol. 302 H2257–H2266. 10.1152/ajpheart.01011.2011
    1. Pascual O., Casper K. B., Kubera C., Zhang J., Revilla-Sanchez R., Sul J.-Y., et al. (2005). Astrocytic purinergic signaling coordinates synaptic networks. Science 310 113–116. 10.1126/science.1116916
    1. Pasinetti G. M. (2002). From epidemiology to therapeutic trials with anti-inflammatory drugs in Alzheimer’s disease: the role of NSAIDs and cyclooxygenase in beta-amyloidosis and clinical dementia. J. Alzheimers Dis. 4 435–445.
    1. Pekny M., Pekna M., Messing A., Steinhäuser C., Lee J.-M., Parpura V., et al. (2016). Astrocytes: a central element in neurological diseases. Acta Neuropathol. 131 323–345. 10.1007/s00401-015-1513-1
    1. Perea G., Navarrete M., Araque A. (2009). Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32 421–431. 10.1016/j.tins.2009.05.001
    1. Pierce A. L., Bullain S. S., Kawas C. H. (2017). Late-onset Alzheimer disease. Neurol. Clin. 35 283–293. 10.1016/j.ncl.2017.01.006
    1. Pirttimaki T. M., Codadu N. K., Awni A., Pratik P., Nagel D. A., Hill E. J., et al. (2013). α7 nicotinic receptor-mediated astrocytic gliotransmitter release: Aβ effects in a preclinical Alzheimer’s mouse model. PLOS ONE 8:e81828. 10.1371/journal.pone.0081828
    1. Prince M., Wimo A., Guerchet M., Ali G., Wu Y., Prina M. (2015). World Alzheimer Report, 2015. The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends. London: Alzheimer’s Disease International (ADI).
    1. Querfurth H. W., LaFerla F. M. (2010). Alzheimer’s disease. N. Engl. J. Med. 362 329–344. 10.1056/NEJMra0909142
    1. Rajkowska G., Miguel-Hidalgo J. J., Wei J., Dilley G., Pittman S. D., Meltzer H. Y., et al. (1999). Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol. Psychiatry 45 1085–1098.
    1. Ransohoff R. M. (2016). How neuroinflammation contributes to neurodegeneration. Science 353 777–783. 10.1126/science.aag2590
    1. Ransohoff R. M., Schafer D., Vincent A., Blachère N. E., Bar-Or A. (2015). Neuroinflammation: ways in which the immune system affects the brain. Neurotherapeutics 12 896–909. 10.1007/s13311-015-0385-3
    1. Raskin J., Cummings J., Hardy J., Schuh K., Dean R. A. (2015). Neurobiology of Alzheimer’s disease: integrated molecular, physiological, anatomical, biomarker, and cognitive dimensions. Curr. Alzheimer Res. 12 712–722. 10.1186/s40478-014-0134-6
    1. Rehman S. U., Shah S. A., Ali T., Chung J. I., Kim M. O. (2017). Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol. Neurobiol. 54 255–271. 10.1007/s12035-015-9604-5
    1. Ries M., Sastre M. (2016). Mechanisms of Aβ clearance and degradation by glial cells. Front. Aging Neurosci. 8:160 10.3389/fnagi.2016.00160
    1. Robinson S. R. (2000). Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem. Int. 36 471–482.
    1. Rodriguez-Vieitez E., Carter S. F., Chiotis K., Saint-Aubert L., Leuzy A., Schöll M., et al. (2016a). Comparison of early-phase 11C-deuterium-l-deprenyl and 11C-pittsburgh compound B PET for assessing brain perfusion in Alzheimer disease. J. Nucl. Med. 57 1071–1077. 10.2967/jnumed.115.168732
    1. Rodriguez-Vieitez E., Saint-Aubert L., Carter S. F., Almkvist O., Farid K., Schöll M., et al. (2016b). Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain 139 922–936. 10.1093/brain/awv404
    1. Ronco V., Grolla A. A., Glasnov T. N., Canonico P. L., Verkhratsky A., Genazzani A. A., et al. (2014). Differential deregulation of astrocytic calcium signalling by amyloid-β, TNFα, IL-1β and LPS. Cell Calcium 55 219–229. 10.1016/j.ceca.2014.02.016
    1. Saha R. N., Pahan K. (2006). Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid. Redox Signal. 8 929–947. 10.1089/ars.2006.8.929
    1. Salvatore C., Cerasa A., Battista P., Gilardi M. C., Quattrone A., Castiglioni I., et al. (2015). Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach. Front. Neurosci. 9:307 10.3389/fnins.2015.00307
    1. Sanchez P. E., Zhu L., Verret L., Vossel K. A., Orr A. G., Cirrito J. R., et al. (2012). Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc. Natl. Acad. Sci. U.S.A. 109 E2895–E2903. 10.1073/pnas.1121081109
    1. Sánchez-Rodríguez I., Temprano-Carazo S., Nájera A., Djebari S., Yajeya J., Gruart A., et al. (2017). Activation of G-protein-gated inwardly rectifying potassium (Kir3/GirK) channels rescues hippocampal functions in a mouse model of early amyloid-β pathology. Sci. Rep. 7:14658. 10.1038/s41598-017-15306-8
    1. Sarup A., Larsson O. M., Schousboe A. (2003). GABA transporters and GABA-transaminase as drug targets. Curr. Drug Targets CNS Neurol. Disord. 2 269–277.
    1. Satoh J.-I., Yamamoto Y., Asahina N., Kitano S., Kino Y. (2014). RNA-Seq data mining: downregulation of NeuroD6 serves as a possible biomarker for Alzheimer’s disease brains. Dis. Markers 2014:123165. 10.1155/2014/123165
    1. Schöll M., Carter S. F., Westman E., Rodriguez-Vieitez E., Almkvist O., Thordardottir S., et al. (2015). Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci. Rep. 5:16404. 10.1038/srep16404
    1. Schrag M., Mueller C., Zabel M., Crofton A., Kirsch W. M., Ghribi O., et al. (2013). Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol. Dis. 59 100–110. 10.1016/j.nbd.2013.07.005
    1. Schubert D., Soucek T., Blouw B. (2009). The induction of HIF-1 reduces astrocyte activation by amyloid beta peptide. Eur. J. Neurosci. 29 1323–1334. 10.1111/j.1460-9568.2009.06712.x
    1. Selkoe D. J., Hardy J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8 595–608. 10.15252/emmm.201606210
    1. Shi Z.-M., Han Y.-W., Han X.-H., Zhang K., Chang Y.-N., Hu Z.-M., et al. (2016). Upstream regulators and downstream effectors of NF-κB in Alzheimer’s disease. J. Neurol. Sci. 366 127–134. 10.1016/j.jns.2016.05.022
    1. Simic G., Lucassen P. J., Krsnik Z., Kruslin B., Kostovic I., Winblad B., et al. (2000). nNOS expression in reactive astrocytes correlates with increased cell death related DNA damage in the hippocampus and entorhinal cortex in Alzheimer’s disease. Exp. Neurol. 165 12–26. 10.1006/exnr.2000.7448
    1. Simonovitch S., Schmukler E., Bespalko A., Iram T., Frenkel D., Holtzman D. M., et al. (2016). Impaired autophagy in APOE4 astrocytes. J. Alzheimers Dis. 51 915–927. 10.3233/JAD-151101
    1. Sofroniew M. V. (2014). Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist 20 160–172. 10.1177/1073858413504466
    1. Sofroniew M. V., Vinters H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathol. 119 7–35. 10.1007/s00401-009-0619-8
    1. Sohanaki H., Baluchnejadmojarad T., Nikbakht F., Roghani M. (2016). Pelargonidin improves memory deficit in amyloid β25-35 rat model of Alzheimer’s disease by inhibition of glial activation, cholinesterase, and oxidative stress. Biomed. Pharmacother. 83 85–91. 10.1016/j.biopha.2016.06.021
    1. Song Z., Xiong B., Guan X., Cao F., Manyande A., Zhou Y., et al. (2016). Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes. Acta Pharmacol. Sin. 37 753–762. 10.1038/aps.2016.1
    1. Soucek T., Cumming R., Dargusch R., Maher P., Schubert D. (2003). The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron 39 43–56.
    1. Swomley A. M., Butterfield D. A. (2015). Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch. Toxicol. 89 1669–1680. 10.1007/s00204-015-1556-z
    1. Szekely C. A., Green R. C., Breitner J. C. S., Østbye T., Beiser A. S., Corrada M. M., et al. (2008). No advantage of A beta 42-lowering NSAIDs for prevention of Alzheimer dementia in six pooled cohort studies. Neurology 70 2291–2298. 10.1212/01.wnl.0000313933.17796.f6
    1. Takeda S., Sato N., Morishita R. (2014). Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy. Front. Aging Neurosci. 6:171. 10.3389/fnagi.2014.00171
    1. Talantova M., Sanz-Blasco S., Zhang X., Xia P., Akhtar M. W., Okamoto S., et al. (2013). Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc. Natl. Acad. Sci. U.S.A. 110 E2518–E2527. 10.1073/pnas.1306832110
    1. Tóbon-Velasco J. C., Cuevas E., Torres-Ramos M. A. (2014). Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol. Disord. Drug Targets 13 1615–1626.
    1. Todd R. D., Garrard W. T. (1979). Overall pathway of mononucleosome production. J. Biol. Chem. 254 3074–3083.
    1. Toivari E., Manninen T., Nahata A. K., Jalonen T. O., Linne M.-L. (2011). Effects of transmitters and amyloid-beta peptide on calcium signals in rat cortical astrocytes: fura-2AM measurements and stochastic model simulations. PLOS ONE 6:e17914. 10.1371/journal.pone.0017914
    1. Turillazzi E., Neri M., Cerretani D., Cantatore S., Frati P., Moltoni L., et al. (2016). Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: the mutual crosstalk between ROS and NF-kB. J. Cell. Mol. Med. 20 601–612. 10.1111/jcmm.12748
    1. Ueda Y., Doi T., Nagatomo K., Tokumaru J., Takaki M., Willmore L. J. (2007). Effect of levetiracetam on molecular regulation of hippocampal glutamate and GABA transporters in rats with chronic seizures induced by amygdalar FeCl3 injection. Brain Res. 1151 55–61. 10.1016/j.brainres.2007.03.021
    1. Uittenbogaard M., Baxter K. K., Chiaramello A. (2010). NeuroD6 genomic signature bridging neuronal differentiation to survival via the molecular chaperone network. J. Neurosci. Res. 88 33–54. 10.1002/jnr.22182
    1. Valko M., Leibfritz D., Moncol J., Cronin M. T. D., Mazur M., Telser J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39 44–84. 10.1016/j.biocel.2006.07.001
    1. Van Cauwenberghe C., Van Broeckhoven C., Sleegers K. (2016). The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet. Med. 18 421–430. 10.1038/gim.2015.117
    1. van Gijsel-Bonnello M., Baranger K., Benech P., Rivera S., Khrestchatisky M., de Reggi M., et al. (2017). Metabolic changes and inflammation in cultured astrocytes from the 5xFAD mouse model of Alzheimer’s disease: alleviation by pantethine. PLOS ONE 12:e0175369. 10.1371/journal.pone.0175369
    1. Vasile F., Dossi E., Rouach N. (2017). Human astrocytes: structure and functions in the healthy brain. Brain Struct. Funct. 222 2017–2029. 10.1007/s00429-017-1383-5
    1. Verdier Y., Zarándi M., Penke B. (2004). Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. J. Pept. Sci. 10 229–248. 10.1002/psc.573
    1. Verkhratsky A., Kirchhoff F. (2007). NMDA receptors in glia. Neuroscientist 13 28–37. 10.1177/1073858406294270
    1. Viña J., Lloret A., Ortí R., Alonso D. (2004). Molecular bases of the treatment of Alzheimer’s disease with antioxidants: prevention of oxidative stress. Mol. Asp. Med. 25 117–123. 10.1016/j.mam.2004.02.013
    1. Vincent A. J., Gasperini R., Foa L., Small D. H. (2010). Astrocytes in Alzheimer’s disease: emerging roles in calcium dysregulation and synaptic plasticity. J. Alzheimers Dis. 22 699–714. 10.3233/JAD-2010-101089
    1. Vos S. J. B., van Boxtel M. P. J., Schiepers O. J. G., Deckers K., de Vugt M., Carrière I., et al. (2017). Modifiable risk factors for prevention of dementia in midlife, late life and the oldest-old: validation of the LIBRA index. J. Alzheimers Dis. 58 537–547. 10.3233/JAD-161208
    1. Vossel K. A., Beagle A. J., Rabinovici G. D., Shu H., Lee S. E., Naasan G., et al. (2013). Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 70 1158–1166. 10.1001/jamaneurol.2013.136
    1. Walker D. G., Whetzel A. M., Serrano G., Sue L. I., Beach T. G., Lue L.-F. (2015). Association of CD33 polymorphism rs3865444 with Alzheimer’s disease pathology and CD33 expression in human cerebral cortex. Neurobiol. Aging 36 571–582. 10.1016/j.neurobiolaging.2014.09.023
    1. Walls A. B., Waagepetersen H. S., Bak L. K., Schousboe A., Sonnewald U. (2015). The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem. Res. 40 402–409. 10.1007/s11064-014-1473-1
    1. Wan F., Lenardo M. J. (2010). The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives. Cell Res. 20 24–33. 10.1038/cr.2009.137
    1. Wang G., Chen L., Pan X., Chen J., Wang L., Wang W., et al. (2016). The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling. Oncotarget 7 17380–17392. 10.18632/oncotarget.8041
    1. Wang Z.-X., Tan L., Liu J., Yu J.-T. (2016). The essential role of soluble Aβ oligomers in Alzheimer’s disease. Mol. Neurobiol. 53 1905–1924. 10.1007/s12035-015-9143-0
    1. Wang H.-M., Zhang T., Huang J.-K., Sun X.-J. (2013). 3-N-butylphthalide (NBP) attenuates the amyloid-β-induced inflammatory responses in cultured astrocytes via the nuclear factor-κB signaling pathway. Cell. Physiol. Biochem. 32 235–242. 10.1159/000350139
    1. Wang J., Tan L., Wang H.-F., Tan C.-C., Meng X.-F., Wang C., et al. (2015). Anti-inflammatory drugs and risk of Alzheimer’s disease: an updated systematic review and meta-analysis. J. Alzheimers Dis. 44 385–396. 10.3233/JAD-141506
    1. Wang L., Wang M., Hu J., Shen W., Hu J., Yao Y., et al. (2017). Protective effect of 3H-1, 2-dithiole-3-thione on cellular model of Alzheimer’s disease involves Nrf2/ARE signaling pathway. Eur. J. Pharmacol. 795 115–123. 10.1016/j.ejphar.2016.12.013
    1. Webster M. J., O’Grady J., Kleinman J. E., Weickert C. S. (2005). Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience 133 453–461. 10.1016/j.neuroscience.2005.02.037
    1. Westin K., Buchhave P., Nielsen H., Minthon L., Janciauskiene S., Hansson O. (2012). CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease. PLOS ONE 7:e30525. 10.1371/journal.pone.0030525
    1. Wu J., Hocevar M., Foss J. F., Bie B., Naguib M. (2017). Activation of CB2 receptor system restores cognitive capacity and hippocampal Sox2 expression in a transgenic mouse model of Alzheimer’s disease. Eur. J. Pharmacol. 811 12–20. 10.1016/j.ejphar.2017.05.044
    1. Xiu J., Nordberg A., Zhang J.-T., Guan Z.-Z. (2005). Expression of nicotinic receptors on primary cultures of rat astrocytes and up-regulation of the alpha7, alpha4 and beta2 subunits in response to nanomolar concentrations of the beta-amyloid peptide(1-42). Neurochem. Int. 47 281–290. 10.1016/j.neuint.2005.04.023
    1. Yan P., Hu X., Song H., Yin K., Bateman R. J., Cirrito J. R., et al. (2006). Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. J. Biol. Chem. 281 24566–24574. 10.1074/jbc.M602440200
    1. Yan R. (2017). Physiological functions of the β-site amyloid precursor protein cleaving enzyme 1 and 2. Front. Mol. Neurosci. 10:97 10.3389/fnmol.2017.00097
    1. Yang F., Lim G. P., Begum A. N., Ubeda O. J., Simmons M. R., Ambegaokar S. S., et al. (2005). Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 280 5892–5901. 10.1074/jbc.M404751200
    1. Yang Y., Ge W., Chen Y., Zhang Z., Shen W., Wu C., et al. (2003). Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc. Natl. Acad. Sci. U.S.A. 100 15194–15199. 10.1073/pnas.2431073100
    1. Yarishkin O., Lee J., Jo S., Hwang E. M., Lee C. J. (2015). Disinhibitory action of astrocytic GABA at the perforant path to dentate gyrus granule neuron synapse reverses to inhibitory in Alzheimer’s disease model. Exp. Neurobiol. 24 211–218. 10.5607/en.2015.24.3.211
    1. Ye B., Shen H., Zhang J., Zhu Y.-G., Ransom B. R., Chen X.-C., et al. (2015). Dual pathways mediate β-amyloid stimulated glutathione release from astrocytes. Glia 63 2208–2219. 10.1002/glia.22886
    1. Yeh F. L., Wang Y., Tom I., Gonzalez L. C., Sheng M. (2016). TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 91 328–340. 10.1016/j.neuron.2016.06.015
    1. Yin K.-J., Cirrito J. R., Yan P., Hu X., Xiao Q., Pan X., et al. (2006). Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J. Neurosci. 26 10939–10948. 10.1523/JNEUROSCI.2085-06.2006
    1. Yun H.-M., Kim J. A., Hwang C. J., Jin P., Baek M. K., Lee J. M., et al. (2015). Neuroinflammatory and amyloidogenic activities of IL-32β in Alzheimer’s disease. Mol. Neurobiol. 52 341–352. 10.1007/s12035-014-8860-0
    1. Zamanian J. L., Xu L., Foo L. C., Nouri N., Zhou L., Giffard R. G., et al. (2012). Genomic analysis of reactive astrogliosis. J. Neurosci. 32 6391–6410. 10.1523/JNEUROSCI.6221-11.2012
    1. Zhang X., Luhrs K. J., Ryff K. A., Malik W. T., Driscoll M. J., Culver B. (2009). Suppression of nuclear factor kappa B ameliorates astrogliosis but not amyloid burden in APPswe/PS1dE9 mice. Neuroscience 161 53–58. 10.1016/j.neuroscience.2009.03.010
    1. Zhao J., Davis M. D., Martens Y. A., Shinohara M., Graff-Radford N. R., Younkin S. G., et al. (2017). APOE 𝜀4/𝜀4 diminishes neurotrophic function of human iPSC-derived astrocytes. Hum. Mol. Genet. 26 2690–2700. 10.1093/hmg/ddx155
    1. Zhao J., O’Connor T., Vassar R. (2011). The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J. Neuroinflammation 8:150. 10.1186/1742-2094-8-150
    1. Zhu D., Lai Y., Shelat P. B., Hu C., Sun G. Y., Lee J. C.-M. (2006). Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J. Neurosci. 26 11111–11119. 10.1523/JNEUROSCI.3505-06.2006
    1. Zhu X.-C., Yu J.-T., Jiang T., Wang P., Cao L., Tan L. (2015). CR1 in Alzheimer’s disease. Mol. Neurobiol. 51 753–765. 10.1007/s12035-014-8723-8

Source: PubMed

3
Sottoscrivi