In-Vitro Growth Inhibition of Bacterial Pathogens by Probiotics and a Synbiotic: Product Composition Matters

Jacek Piatek, Hanna Krauss, Arleta Ciechelska-Rybarczyk, Malgorzata Bernatek, Paulina Wojtyla-Buciora, Henning Sommermeyer, Jacek Piatek, Hanna Krauss, Arleta Ciechelska-Rybarczyk, Malgorzata Bernatek, Paulina Wojtyla-Buciora, Henning Sommermeyer

Abstract

A variety of activities potentially contribute to the beneficial effects of probiotic bacteria observed in humans. Among these is a direct inhibition of the growth of pathogenic bacteria in the gut. The present study characterizes head-to-head the in-vitro pathogen growth inhibition of clinically relevant infectious bacterial strains by different types of probiotics and a synbiotic. In-vitro growth inhibition of Escherichia (E.) coli EPEC, Shigella (Sh.) sonnei, Salmonella (S.) typhimurium, Klebsiella (K.) pneumoniae and Clostridioides (C.) difficile were determined. Investigated products were a yeast mono strain probiotic containing Saccharomyces (Sac.) boulardii, bacterial mono strain probiotics containing either Lactobacillus (L.) rhamnosus GG or L. reuteri DSM 17938, a multi strain probiotic containing three L. rhamnosus strains (E/N, Oxy, Pen), and a multi strain synbiotic containing nine different probiotic bacterial strains and the prebiotic fructooligosaccharides (FOS). Inhibition of pathogens was moderate by Sac. boulardii and L. rhamnosus GG, medium by L. reuteri DSM 17938 and the L. rhamnosus E/N, Oxy, Pen mixture and strong by the multi strain synbiotic. Head-to-head in-vitro pathogen growth inhibition experiments can be used to differentiate products from different categories containing probiotic microorganisms and can support the selection process of products for further clinical evaluation.

Keywords: antimicrobial activity; gut microbiome; pathogen overgrowth.

Conflict of interest statement

Henning Sommermeyer works as a consultant for Vivatrex GmbH, a company which is marketing Multilac® Baby in Germany. Vivatrex GmbH was not involved in the design, collection, analyses or interpretation of data, in writing the manuscript, or in the decision to publish the results. All other authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
In-vitro growth inhibition of pathogens by different probiotics and a multi strain synbiotic. The L. rhamnosus E/N, Oxy, Pen mixture contains the three different probiotics in a CFU ratio of 40/20/40. The multi strain synbiotic contains a mixture of equal CFU amounts of L. acidophilus LA-14; L. casei R0215; L. paracasei Lpc-3; L. plantarum Lp-115; L. rhamnosus GG, L. salivarius Ls-33, B. lactis Bl-04, B. bifidum R0071, B. longum R0175 and the prebiotic fructooligosaccharides (FOS). Significant differences (p-values < 0.01) between the inhibitions by different products are indicated by horizontal lines marked with an asterisk (*).
Figure 2
Figure 2
Example of the effects of the multi strain synbiotic (A) and FOS (B) on the in-vitro growth of Enteropathogenic E. coli EPEC.

References

    1. Aslam B., Arshad M.I., Khurshid M., Muzammil S., Rasool M.H., Nisar M.A., Alvi R.F., Aslam M.A., Qamar M.U., Salamat M.K.F., et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018;11:1645–1658. doi: 10.2147/IDR.S173867.
    1. McFarland L. Antibiotic-associated diarrhea: Epidemiology, trends and treatment. Future Microbiol. 2008;3:563–578. doi: 10.2217/17460913.3.5.563.
    1. Farooq P.D., Urrunaga N.H., Tang D.M., von Rosenvinge E.C. Pseudomembranous Colitis. Dis. Mon. 2015;61:181–206. doi: 10.1016/j.disamonth.2015.01.006.
    1. Bäumler A.J., Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535:85–93. doi: 10.1038/nature18849.
    1. Guo Q., Goldenberg J.Z., Humphrey C., El Dib R., Johnsto B.C. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst. Rev. 2019;4:CD004827. doi: 10.1002/14651858.CD004827.pub5.
    1. Szajewska H., Kolodziej M. Systematic review with meta-analysis: Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea. Aliment. Pharmacol. Ther. 2015;42:793–801. doi: 10.1111/apt.13344.
    1. Szajewska H., Kolodziej M. Systematic review with meta-analysis: Lactobacillus rhamnosusGG in the prevention of antibiotic-associated diarrhoea in children and adults. Aliment. Pharmacol. Ther. 2015;42:1149–1157. doi: 10.1111/apt.13404.
    1. Urbanska M., Gieruszczak-Bialek D., Szajewska H. Systematic review with meta-analysis: Lactobacillus reuteri DSM 17938 for diarrhoeal diseases in children. Aliment. Pharmacol. Ther. 2016;43:1025–1034. doi: 10.1111/apt.13590.
    1. Jarocki P., Podlesny M., Wasko A., Siuda A., Targonski Z. Differentiation of three Lactobacillus rhamnosus strains (E/N, Oxy and Pen) by SDS-PAGE and two-dimensional electrophoresis of surface-associated proteins. J. Microbiol. Biotechnol. 2010;20:558–562. doi: 10.4014/jmb.0908.08003.
    1. Ellner P.D., Stoessel C.J., Drakeford E., Vasi F. A new culture medium for medical bacteriology. Tech. Bull. Regist. Med. Technol. 1966;36:58–60. doi: 10.1093/ajcp/45.4_ts.502.
    1. De Man J.C., Rogosa M., Sharpe M.E. A medium for the cultivation of Lactobacilli. Appl. Bact. 1960;23:130–135. doi: 10.1111/j.1365-2672.1960.tb00188.x.
    1. Schaedler R.W., Dubos R., Costello R. The development of the bacterial flora in the gastrointestinal tract of mice. J. Exp. Med. 1965;122:59–66. doi: 10.1084/jem.122.1.59.
    1. Ochoa T.J., Contreras C.A. Enteropathogenic, E. coli (EPEC) infection in children. Curr. Opin. Infect. Dis. 2011;24:478–483. doi: 10.1097/QCO.0b013e32834a8b8b.
    1. Poirel L., Madec J.Y., Lupo A., Schink A.K., Kieffer N., Nordmann P., Schwarz S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018;6 doi: 10.1128/microbiolspec.ARBA-0026-2017.
    1. Fijan S., Sulc D., Steyer A. Study of the In Vitro Antagonistic Activity of Various Mono-Strain and Multi-Strain Probiotics against Escherichia coli. Int. J. Environ. Res. Public Health. 2018;15:1539. doi: 10.3390/ijerph15071539.
    1. Rajkowska K., Kunicka-Styczynska A., Rygala A. Probiotic Activity of Saccharomyces cerevisiae var. boulardii Against Human Pathogens. Food Technol. Biotechnol. 2012;50:230–236.
    1. Hütt P., Shchepetova J., Lõivukene K., Kullisaar T., Mikelsaar M. Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens. J. Appl. Microbiol. 2006;100:1324–1332. doi: 10.1111/j.1365-2672.2006.02857.x.
    1. Shokryazdan P., Sieo C.C., Kalavathy R., Liang J.B., Alitheen N.B., Jahromi M.F., Ho Y.W. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains. BioMed Res. Int. 2014;2014:927268. doi: 10.1155/2014/927268.
    1. Jacobsen C.N., Rosenfeldt Nielsen V., Hayford A.E., Møller L., Michaelsen K.F., Pærregaard A., Sandström B., Tvede M., Jakobsen M. Screening of Probiotic Activities of Forty-Seven Strains of Lactobacillus spp. by In Vitro Techniques and Evaluation of the Colonization Ability of Five Selected Strains in Humans. Appl. Environ. Microbiol. 1999;65:4949–4956. doi: 10.1128/AEM.65.11.4949-4956.1999.
    1. Niyogi S.K. Shigellosis. J. Microbiol. 2005;43:133–143.
    1. Puzari M., Sharma M., Chetia P. Emergence of antibiotic resistant Shigella species: A matter of concern. J. Infect. Public Health. 2018;11:451–454. doi: 10.1016/j.jiph.2017.09.025.
    1. Mumy K.L., Chen X., Kelly C.P., McCormick B.A. Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events. Am. J. Physiol. Gastrointest. Liver Physiol. 2008;294:G599–G609. doi: 10.1152/ajpgi.00391.2007.
    1. Spinler J.K., Taweechotipatr M., Rognerud C.L., Ou C.N., Tumwasorn S., Versalovic J. Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe. 2008;14:166–171. doi: 10.1016/j.anaerobe.2008.02.001.
    1. Zhang Y.C., Zhang L.W., Ma W., Yi H.X., Yang X., Du M., Shan Y.J., Han X., Zhang L.L. Screening of probiotic lactobacilli for inhibition of Shigella sonnei and the macromolecules involved in inhibition. Anaerobe. 2012;18:498–503. doi: 10.1016/j.anaerobe.2012.08.007.
    1. Eng S.K., Pusparajah P., Ab Mutalib N.S., Ser H.L., Chan K.G., Lee L.H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015;8:284–293. doi: 10.1080/21553769.2015.1051243.
    1. Marzel A., Desai P.T., Goren A., Schorr Y.I., Nissan I., Porwollik S., Valinsky L., McClelland M., Rahav G., Gal-Mor O. Persistant Infections by Nontyphoidal Salmonella in Humans: Epidemilogy and Genetics. Clin. Infect. Dis. 2016;62:879–886. doi: 10.1093/cid/civ1221.
    1. Liévin-Le Moal V., Servin A.L. Anti-Infective Activities of Lactobacillus Strains in the Human Intestinal Microbiota: From Probiotics to Gastrointestinal Anti-Infectious Biotherapeutic Agents. Clin. Microbiol. 2014;27:167–199. doi: 10.1128/CMR.00080-13.
    1. Gut A.M., Vasiljevic T., Yeager T., Donkor O.N. Salmonella infection—prevention and treatment by antibiotics and probiotic yeasts: A review. Microbiology. 2018;164:1327–1344. doi: 10.1099/mic.0.000709.
    1. Das J.K., Mishra D., Ray P., Tripathy P., Beuria T.K., Singh N., Suar M. In vitro evaluation of anti-infective activity of a Lactobacillus plantarum strain against Salmonella enterica serovar Enteritidis. Gut Pathog. 2013;5:1. doi: 10.1186/1757-4749-5-11.
    1. Piatek J., Sommermeyer H., Bernatek M., Ciechelska-Rybarczyk A., Oleskow B., Sommer Mikkelsen L., Bundvig Barken K. Persistent infection by Salmonella enterica servovar Typhimurium: Are synbiotics a therapeutic option?—A case report. Benef. Microbes. 2019;10:211–217. doi: 10.3920/BM2018.0080.
    1. Dowarah R., Verma A.K., Agarwal N., Singh P., Singh B.R. Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS ONE. 2018;13:e0192978. doi: 10.1371/journal.pone.0192978.
    1. Centers for Disease Control and Prevention (CDC) Vital Signs: Carbapenem-Resistant Enterobacteriaceae. MMWR Morb. Mortal. Wkly. Rep. 2013;62:165–170.
    1. Xu L., Sun X., Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann. Clin. Microbiol. Antimicrob. 2017;16:18. doi: 10.1186/s12941-017-0191-3.
    1. Mogna L., Deidda F., Nicola S., Amoruso A., Del Piano M., Mogna G. In Vitro Inhibition of Klebsiella pneumoniae by Lactobacillus delbrueckii Subsp. delbrueckii LDD01 (DSM 22106): An Innovative Strategy to Possibly Counteract Such Infections in Humans? J. Clin. Gastroenterol. 2016;50(Suppl. 2) doi: 10.1097/MCG.0000000000000680.
    1. Savino F., Cordisco L., Tarasco V., Locatelli E., Di Gioia D., Oggero R., Matteuzzi D. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants. BMC Microbiol. 2011;11:157. doi: 10.1186/1471-2180-11-157.
    1. Piatek J., Bernatek M., Ciechelska-Rybarczyk A., Oleskow B., Sommermeyer H. Inhibition of Carbapenem- Resistant NDM-1 Klebsiella pneumoniae isolated from a Hospital Outbreak Patient by a Synbiotic: A Non antibiotic Treatment Option. Int. J. Med. Res. Health Sci. 2019;8:12–20.
    1. Bignardi G.E. Risk factors for Clostridium difficile infection. J. Hosp. Infect. 1998;40:1–15. doi: 10.1016/S0195-6701(98)90019-6.
    1. McDonald L.C., Gerding D.N., Johnson S., Bakken J.S., Carroll K.C., Coffin S.E., Dubberke E.R., Garey K.W., Gould C.V., Kelly C., et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA) Clin. Infect. Dis. 2018;66:e1–e48. doi: 10.1093/cid/cix1085.
    1. Chang J.Y., Antonopoulos D., Kalra A., Tonelli A., Khalife W.T., Schmidt T.M., Young V.B. Decreased Diversity of the Fecal Microbiome in Recurrent Clostridium difficile -Associated Diarrhea. J. Infect. Dis. 2008;197:435–438. doi: 10.1086/525047.
    1. Naaber P., Smidt I., Štšepetova J., Brilene T., Annuk H., Mikelsaar M. Inhibition of Clostridium difficile strains by intestinal Lactobacillus species. J. Med. Microbiol. 2004;53:551–553. doi: 10.1099/jmm.0.45595-0.
    1. Schoster A., Kokotovic B., Permin A., Pedersen P.D., Dal Bello F., Guardabassi L. In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains. Anaerobe. 2013;20:36–41. doi: 10.1016/j.anaerobe.2013.02.006.
    1. Timmerman H.M., Koning C.J., Mulder L., Rombouts F.M., Beynen A.C. Monostrain, multistrain and multispecies probiotics-A comparison of functionality and efficacy. Int. J. Food Microbiol. 2004;96:219–233. doi: 10.1016/j.ijfoodmicro.2004.05.012.
    1. Ouwehand A.C., Invernici M.M., Furlaneto F.A.C., Messora M.R. Effectiveness of Multistrain versus Single-Strain Probiotics: Current Status and Recommendations for the Future. J. Clin. Gastroenterol. 2018;52(Suppl. 1):S35–S40. doi: 10.1097/MCG.0000000000001052.

Source: PubMed

3
Sottoscrivi