Autophagy and Alzheimer's Disease: From Molecular Mechanisms to Therapeutic Implications

Md Sahab Uddin, Anna Stachowiak, Abdullah Al Mamun, Nikolay T Tzvetkov, Shinya Takeda, Atanas G Atanasov, Leandro B Bergantin, Mohamed M Abdel-Daim, Adrian M Stankiewicz, Md Sahab Uddin, Anna Stachowiak, Abdullah Al Mamun, Nikolay T Tzvetkov, Shinya Takeda, Atanas G Atanasov, Leandro B Bergantin, Mohamed M Abdel-Daim, Adrian M Stankiewicz

Abstract

Alzheimer's disease (AD) is the most common cause of progressive dementia in the elderly. It is characterized by a progressive and irreversible loss of cognitive abilities and formation of senile plaques, composed mainly of amyloid β (Aβ), and neurofibrillary tangles (NFTs), composed of tau protein, in the hippocampus and cortex of afflicted humans. In brains of AD patients the metabolism of Aβ is dysregulated, which leads to the accumulation and aggregation of Aβ. Metabolism of Aβ and tau proteins is crucially influenced by autophagy. Autophagy is a lysosome-dependent, homeostatic process, in which organelles and proteins are degraded and recycled into energy. Thus, dysfunction of autophagy is suggested to lead to the accretion of noxious proteins in the AD brain. In the present review, we describe the process of autophagy and its importance in AD. Additionally, we discuss mechanisms and genes linking autophagy and AD, i.e., the mTOR pathway, neuroinflammation, endocannabinoid system, ATG7, BCL2, BECN1, CDK5, CLU, CTSD, FOXO1, GFAP, ITPR1, MAPT, PSEN1, SNCA, UBQLN1, and UCHL1. We also present pharmacological agents acting via modulation of autophagy that may show promise in AD therapy. This review updates our knowledge on autophagy mechanisms proposing novel therapeutic targets for the treatment of AD.

Keywords: Alzheimer’s disease; amyloid beta; autophagy; tau.

Figures

FIGURE 1
FIGURE 1
Representation of proteins and protein complexes involved in the “Autophagy – animal” KEGG pathway. This figure was taken from the KEGG database (http://www.genome.jp/kegg-bin/show_pathway?ko04140) and modified. Blue boxes mark the proteins that are associated with AD. Orange boxes mark additional proteins that are not originally included in the pathway. These genes are associated with both AD and autophagy, and are discussed in the present review. Red, blue, and violet lines mark partners with which the additional proteins interact (red color means activation, blue color means inhibition, and violet color means unspecified or complex (e.g., both inhibitory and stimulatory effect) according to STRING database). The interactions data were extracted from the STRING database (http://string-db.org). To assure that the presented data is reliable, we have included only interactions that showed at least medium STRING confidence score and were either identified in an experiment or are annotated in manually curated databases. Additionally, we have added interaction between GFAP and LAMP, which was not included in STRING database but was found by manual literature search. Permission to use KEGG figure was granted.
FIGURE 2
FIGURE 2
Connections between genes discussed in the “Genes Common to Autophagy and AD” section and (A) neuroinflammation as well as (B) cannabinoids. This figure was drawn based on data obtained using the Chilibot tool. Black arrows mark relationships that are neither obviously stimulatory nor inhibitory. Orange arrow marks both stimulatory and inhibitory relationship. Red arrow marks inhibitory relationship. Green arrow mark stimulatory relationship. The respective numbers mark the weight of the relationship according to the Chilibot tool.

References

    1. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. (2002). Transport from the Trans Golgi Network to Lysosomes. New York, NY: Garland Science.
    1. Armstrong R. A. (2009). The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol. 47 289–299.
    1. Atkin G., Paulson H. (2014). Ubiquitin pathways in neurodegenerative disease. Front. Mol. Neurosci. 7:63 10.3389/fnmol.2014.00063
    1. Bachhuber T., Katzmarski N., Mccarter J. F., Loreth D., Tahirovic S., Kamp F., et al. (2015). Inhibition of amyloid-beta plaque formation by alpha-synuclein. Nat. Med. 21 802–807. 10.1038/nm.3885
    1. Bai Z., Han G., Xie B., Wang J., Song F., Peng X., et al. (2016). AlzBase: an integrative database for gene dysregulation in Alzheimer’s disease. Mol. Neurobiol. 53 310–319. 10.1007/s12035-014-9011-3
    1. Bai Z., Stamova B., Xu H., Ander B. P., Wang J., Jickling G. C., et al. (2014). Distinctive RNA expression profiles in blood associated with Alzheimer disease after accounting for white matter hyperintensities. Alzheimer Dis. Assoc. Disord. 28 226–233. 10.1097/WAD.0000000000000022
    1. Baig S., Palmer L. E., Owen M. J., Williams J., Kehoe P. G., Love S. (2012). Clusterin mRNA and protein in Alzheimer’s disease. J. Alzheimers Dis. 28 337–344. 10.3233/JAD-2011-110473
    1. Bandyopadhyay U., Sridhar S., Kaushik S., Kiffin R., Cuervo A. M. (2010). Identification of regulators of chaperone-mediated autophagy. Mol. Cell 39 535–547. 10.1016/j.molcel.2010.08.004
    1. Barral S., Bird T., Goate A., Farlow M. R., Diaz-Arrastia R., Bennett D. A., et al. (2012). Genotype patterns at PICALM, CR1 BIN1 CLU, and APOE genes are associated with episodic memory. Neurology 78 1464–1471. 10.1212/WNL.0b013e3182553c48
    1. Basu A., Krady J. K., Levison S. W. (2004). Interleukin-1: a master regulator of neuroinflammation. J. Neurosci. Res. 78 151–156. 10.1002/jnr.20266
    1. Bateman R. J., Munsell L. Y., Morris J. C., Swarm R., Yarasheski K. E., Holtzman D. M. (2006). Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat. Med. 12 856–861. 10.1038/nm1438
    1. Bedse G., Romano A., Cianci S., Lavecchia A. M., Lorenzo P., Elphick M. R., et al. (2014). Altered expression of the CB1 cannabinoid receptor in the triple transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis. 40 701–712. 10.3233/JAD-131910
    1. Bedse G., Romano A., Lavecchia A. M., Cassano T., Gaetani S. (2015). The role of endocannabinoid signaling in the molecular mechanisms of neurodegeneration in Alzheimer’s disease. J. Alzheimers Dis. 43 1115–1136. 10.3233/JAD-141635
    1. Beeg M., Stravalaci M., Romeo M., Carra A. D., Cagnotto A., Rossi A., et al. (2016). Clusterin binds to Abeta1-42 oligomers with high affinity and interferes with peptide aggregation by inhibiting primary and secondary nucleation. J. Biol. Chem. 291 6958–6966. 10.1074/jbc.M115.689539
    1. Benito C., Nunez E., Tolon R. M., Carrier E. J., Rabano A., Hillard C. J., et al. (2003). Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J. Neurosci. 23 11136–11141.
    1. Bertram L., Mcqueen M. B., Mullin K., Blacker D., Tanzi R. E. (2007). Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39 17–23. 10.1038/ng1934
    1. Bhaskar K., Konerth M., Kokiko-Cochran O. N., Cardona A., Ransohoff R. M., Lamb B. T. (2010). Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68 19–31. 10.1016/j.neuron.2010.08.023
    1. Bian F., Nath R., Sobocinski G., Booher R. N., Lipinski W. J., Callahan M. J., et al. (2002). Axonopathy, tau abnormalities, and dyskinesia, but no neurofibrillary tangles in p25-transgenic mice. J. Comp. Neurol. 446 257–266. 10.1002/cne.10186
    1. Blobel G. (2013). Christian de Duve (1917-2013). Nature 498:300. 10.1038/498300a
    1. Bloom G. S. (2014). Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 71 505–508. 10.1001/jamaneurol.2013.5847
    1. Boland B., Kumar A., Lee S., Platt F. M., Wegiel J., Yu W. H., et al. (2008). Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J. Neurosci. 28 6926–6937. 10.1523/JNEUROSCI.0800-08.2008
    1. Braskie M. N., Jahanshad N., Stein J. L., Barysheva M., Mcmahon K. L., De Zubicaray G. I., et al. (2011). Common Alzheimer’s disease risk variant within the CLU gene affects white matter microstructure in young adults. J. Neurosci. 31 6764–6770. 10.1523/JNEUROSCI.5794-10.2011
    1. Caccamo A., De Pinto V., Messina A., Branca C., Oddo S. (2014). Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer’s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. J. Neurosci. 34 7988–7998. 10.1523/JNEUROSCI.0777-14.2014
    1. Caccamo A., Magri A., Medina D. X., Wisely E. V., Lopez-Aranda M. F., Silva A. J., et al. (2013). mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12 370–380. 10.1111/acel.12057
    1. Caccamo A., Majumder S., Richardson A., Strong R., Oddo S. (2010). Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J. Biol. Chem. 285 13107–13120. 10.1074/jbc.M110.100420
    1. Cai Z., Zhou Y., Liu Z., Ke Z., Zhao B. (2015). Autophagy dysfunction upregulates beta-amyloid peptides via enhancing the activity of gamma-secretase complex. Neuropsychiatr. Dis. Treat. 11 2091–2099. 10.2147/NDT.S84755
    1. Carson M. J., Thrash J. C., Walter B. (2006). The cellular response in neuroinflammation: the role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin. Neurosci. Res. 6 237–245. 10.1016/j.cnr.2006.09.004
    1. Carvalho C., Santos M. S., Oliveira C. R., Moreira P. I. (2015). Alzheimer’s disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochim. Biophys. Acta 1852 1665–1675. 10.1016/j.bbadis.2015.05.001
    1. Cataldo A. M., Peterhoff C. M., Schmidt S. D., Terio N. B., Duff K., Beard M., et al. (2004). Presenilin mutations in familial Alzheimer disease and transgenic mouse models accelerate neuronal lysosomal pathology. J. Neuropathol. Exp. Neurol. 63 821–830. 10.1093/jnen/63.8.821
    1. Cavieres V. A., Gonzalez A., Munoz V. C., Yefi C. P., Bustamante H. A., Barraza R. R., et al. (2015). Tetrahydrohyperforin inhibits the proteolytic processing of amyloid precursor protein and enhances its degradation by Atg5-dependent autophagy. PLOS ONE 10:e0136313. 10.1371/journal.pone.0136313
    1. Cerpa W., Hancke J. L., Morazzoni P., Bombardelli E., Riva A., Marin P. P., et al. (2010). The hyperforin derivative IDN5706 occludes spatial memory impairments and neuropathological changes in a double transgenic Alzheimer’s mouse model. Curr. Alzheimer Res. 7 126–133. 10.2174/156720510790691218
    1. Chan D. K., Braidy N., Xu Y. H., Chataway T., Guo F., Guillemin G. J., et al. (2016). Interference of alpha-synuclein uptake by monomeric beta-Amyloid1-40 and potential core acting site of the interference. Neurotox. Res. 30 479–485. 10.1007/s12640-016-9644-2
    1. Chang K. H., Vincent F., Shah K. (2012). Deregulated Cdk5 triggers aberrant activation of cell cycle kinases and phosphatases inducing neuronal death. J. Cell Sci. 125 5124–5137. 10.1242/jcs.108183
    1. Chau S., Herrmann N., Ruthirakuhan M. T., Chen J. J., Lanctot K. L. (2015). Latrepirdine for Alzheimer’s disease. Cochrane Database Syst. Rev. 4:CD009524. 10.1002/14651858.CD009524.pub2
    1. Chen H., Sharp B. M. (2004). Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinformatics 5:147. 10.1186/1471-2105-5-147
    1. Chen J., Huang R. Y., Turko I. V. (2013). Mass spectrometry assessment of ubiquitin carboxyl-terminal hydrolase L1 partitioning between soluble and particulate brain homogenate fractions. Anal. Chem. 85 6011–6017. 10.1021/ac400831z
    1. Cheng S., Wani W. Y., Hottman D. A., Jeong A., Cao D., Leblanc K. J., et al. (2017). Haplodeficiency of Cathepsin D does not affect cerebral amyloidosis and autophagy in APP/PS1 transgenic mice. J. Neurochem. 142 297–304. 10.1111/jnc.14048
    1. Cho S. J., Yun S. M., Jo C., Lee D. H., Choi K. J., Song J. C., et al. (2015). SUMO1 promotes Abeta production via the modulation of autophagy. Autophagy 11 100–112. 10.4161/15548627.2014.984283
    1. Choi J., Levey A. I., Weintraub S. T., Rees H. D., Gearing M., Chin L. S., et al. (2004). Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J. Biol. Chem. 279 13256–13264. 10.1074/jbc.M314124200
    1. Chu C., Zhang X., Ma W., Li L., Wang W., Shang L., et al. (2013). Induction of autophagy by a novel small molecule improves a beta pathology and ameliorates cognitive deficits. PLOS ONE 8:e65367. 10.1371/journal.pone.0065367
    1. Ciechanover A., Schwartz A. L. (1998). The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc. Natl. Acad. Sci. U.S.A. 95 2727–2730. 10.1073/pnas.95.6.2727
    1. Clementi M. E., Pezzotti M., Orsini F., Sampaolese B., Mezzogori D., Grassi C., et al. (2006). Alzheimer’s amyloid beta-peptide (1-42) induces cell death in human neuroblastoma via bax/bcl-2 ratio increase: an intriguing role for methionine 35. Biochem. Biophys. Res. Commun. 342 206–213. 10.1016/j.bbrc.2006.01.137
    1. Colasanti T., Vomero M., Alessandri C., Barbati C., Maselli A., Camperio C., et al. (2014). Role of alpha-synuclein in autophagy modulation of primary human T lymphocytes. Cell Death Dis. 5:e1265. 10.1038/cddis.2014.211
    1. Corsetti V., Florenzano F., Atlante A., Bobba A., Ciotti M. T., Natale F., et al. (2015). NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer’s disease. Hum. Mol. Genet. 24 3058–3081. 10.1093/hmg/ddv059
    1. Costes S., Gurlo T., Rivera J. F., Butler P. C. (2014). UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in beta-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy. Autophagy 10 1004–1014. 10.4161/auto.28478
    1. Crews L., Patrick C., Adame A., Rockenstein E., Masliah E. (2011). Modulation of aberrant CDK5 signaling rescues impaired neurogenesis in models of Alzheimer’s disease. Cell Death Dis. 2:e120. 10.1038/cddis.2011.2
    1. Crews L., Spencer B., Desplats P., Patrick C., Paulino A., Rockenstein E., et al. (2010). Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLOS ONE 5:e9313. 10.1371/journal.pone.0009313
    1. de Duve C. (2005). The lysosome turns fifty. Nat. Cell Biol. 7 847–849. 10.1038/ncb0905-847
    1. De Duve C., Wattiaux R. (1966). Functions of lysosomes. Annu. Rev. Physiol. 28 435–492. 10.1146/annurev.ph.28.030166.002251
    1. De Strooper B., Saftig P., Craessaerts K., Vanderstichele H., Guhde G., Annaert W., et al. (1998). Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391 387–390. 10.1038/34910
    1. Dean R. T. (1975). Direct evidence of importance of lysosomes in degradation of intracellular proteins. Nature 257 414–416. 10.1038/257414a0
    1. Decuypere J. P., Parys J. B., Bultynck G. (2012). Regulation of the autophagic bcl-2/beclin 1 interaction. Cells 1 284–312. 10.3390/cells1030284
    1. Deming Y., Xia J., Cai Y., Lord J., Holmans P., Bertelsen S., et al. (2016). A potential endophenotype for Alzheimer’s disease: cerebrospinal fluid clusterin. Neurobiol. Aging 37 208.e1–208.e209. 10.1016/j.neurobiolaging.2015.09.009
    1. Deng M., Huang L., Ning B., Wang N., Zhang Q., Zhu C., et al. (2016). beta-asarone improves learning and memory and reduces Acetyl Cholinesterase and Beta-amyloid 42 levels in APP/PS1 transgenic mice by regulating Beclin-1-dependent autophagy. Brain Res. 1652 188–194. 10.1016/j.brainres.2016.10.008
    1. Dickson T. C., King C. E., Mccormack G. H., Vickers J. C. (1999). Neurochemical diversity of dystrophic neurites in the early and late stages of Alzheimer’s disease. Exp. Neurol. 156 100–110. 10.1006/exnr.1998.7010
    1. Dolan P. J., Johnson G. V. (2010). A caspase cleaved form of tau is preferentially degraded through the autophagy pathway. J. Biol. Chem. 285 21978–21987. 10.1074/jbc.M110.110940
    1. Donovan L. E., Higginbotham L., Dammer E. B., Gearing M., Rees H. D., Xia Q., et al. (2012). Analysis of a membrane-enriched proteome from postmortem human brain tissue in Alzheimer’s disease. Proteomics Clin. Appl. 6 201–211. 10.1002/prca.201100068
    1. Du D., Hu L., Wu J., Wu Q., Cheng W., Guo Y., et al. (2017). Neuroinflammation contributes to autophagy flux blockage in the neurons of rostral ventrolateral medulla in stress-induced hypertension rats. J. Neuroinflammation 14:169. 10.1186/s12974-017-0942-2
    1. Du J., Liang Y., Xu F., Sun B., Wang Z. (2013). Trehalose rescues Alzheimer’s disease phenotypes in APP/PS1 transgenic mice. J. Pharm. Pharmacol. 65 1753–1756. 10.1111/jphp.12108
    1. Ferreiro E., Eufrasio A., Pereira C., Oliveira C. R., Rego A. C. (2007). Bcl-2 overexpression protects against amyloid-beta and prion toxicity in GT1-7 neural cells. J. Alzheimers Dis. 12 223–228. 10.3233/JAD-2007-12303
    1. Forlenza O. V., De Paula V. J., Machado-Vieira R., Diniz B. S., Gattaz W. F. (2012). Does lithium prevent Alzheimer’s disease? Drugs Aging 29 335–342. 10.2165/11599180-000000000-00000
    1. Francois A., Rioux Bilan A., Quellard N., Fernandez B., Janet T., Chassaing D., et al. (2014). Longitudinal follow-up of autophagy and inflammation in brain of APPswePS1dE9 transgenic mice. J. Neuroinflammation 11:139. 10.1186/s12974-014-0139-x
    1. Francois A., Terro F., Janet T., Rioux Bilan A., Paccalin M., Page G. (2013). Involvement of interleukin-1beta in the autophagic process of microglia: relevance to Alzheimer’s disease. J. Neuroinflammation 10:151. 10.1186/1742-2094-10-151
    1. Frederick C., Ando K., Leroy K., Heraud C., Suain V., Buee L., et al. (2015). Rapamycin ester analog CCI-779/Temsirolimus alleviates tau pathology and improves motor deficit in mutant tau transgenic mice. J. Alzheimers Dis. 44 1145–1156. 10.3233/JAD-142097
    1. Funakoshi T., Matsuura A., Noda T., Ohsumi Y. (1997). Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene 192 207–213. 10.1016/S0378-1119(97)00031-0
    1. Funderburk S. F., Marcellino B. K., Yue Z. (2010). Cell “self-eating” (autophagy) mechanism in Alzheimer’s disease. Mt. Sinai J. Med. 77 59–68. 10.1002/msj.20161
    1. Garcia-Arencibia M., Hochfeld W. E., Toh P. P., Rubinsztein D. C. (2010). Autophagy, a guardian against neurodegeneration. Semin. Cell Dev. Biol. 21 691–698. 10.1016/j.semcdb.2010.02.008
    1. Giasson B. I., Forman M. S., Higuchi M., Golbe L. I., Graves C. L., Kotzbauer P. T., et al. (2003). Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300 636–640. 10.1126/science.1082324
    1. Glick D., Barth S., Macleod K. F. (2010). Autophagy: cellular and molecular mechanisms. J. Pathol. 221 3–12. 10.1002/path.2697
    1. Gong B., Cao Z., Zheng P., Vitolo O. V., Liu S., Staniszewski A., et al. (2006). Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell 126 775–788. 10.1016/j.cell.2006.06.046
    1. Gong B., Pan Y., Vempati P., Zhao W., Knable L., Ho L., et al. (2013). Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-gamma coactivator 1alpha regulated beta-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging 34 1581–1588. 10.1016/j.neurobiolaging.2012.12.005
    1. Grill J. (2017). Nicotinamide as an Early Alzheimer’s Disease Treatment (NEAT). Bethesda, MD: National Library of Medicine.
    1. Grossi C., Rigacci S., Ambrosini S., Dami T., Luccarini I., Traini C., et al. (eds) (2013). The polyphenol oleuropein aglycone protects TgCRND8 mice against Ass plaque pathology. PLOS ONE 8:e71702. 10.1371/journal.pone.0071702
    1. Guerreiro R., Bras J. (2015). The age factor in Alzheimer’s disease. Genome Med. 7:106. 10.1186/s13073-015-0232-5
    1. Guglielmotto M., Monteleone D., Boido M., Piras A., Giliberto L., Borghi R., et al. (2012). Abeta1-42-mediated down-regulation of Uch-L1 is dependent on NF-kappaB activation and impaired BACE1 lysosomal degradation. Aging Cell 11 834–844. 10.1111/j.1474-9726.2012.00854.x
    1. Harrison D. E., Strong R., Sharp Z. D., Nelson J. F., Astle C. M., Flurkey K., et al. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460 392–395. 10.1038/nature08221
    1. Hiebel C., Kromm T., Stark M., Behl C. (2014). Cannabinoid receptor 1 modulates the autophagic flux independent of mTOR- and BECLIN1-complex. J. Neurochem. 131 484–497. 10.1111/jnc.12839
    1. Higuchi S., Irie K., Mishima S., Araki M., Ohji M., Shirakawa A., et al. (2010). The cannabinoid 1-receptor silent antagonist O-2050 attenuates preference for high-fat diet and activated astrocytes in mice. J. Pharmacol. Sci. 112 369–372. 10.1254/jphs.09326SC
    1. Hiltunen M., Lu A., Thomas A. V., Romano D. M., Kim M., Jones P. B., et al. (2006). Ubiquilin 1 modulates amyloid precursor protein trafficking and Abeta secretion. J. Biol. Chem. 281 32240–32253. 10.1074/jbc.M603106200
    1. Huber L. A., Teis D. (2016). Lysosomal signaling in control of degradation pathways. Curr. Opin. Cell Biol. 39 8–14. 10.1016/j.ceb.2016.01.006
    1. Hubert V., Peschel A., Langer B., Groger M., Rees A., Kain R. (2016). LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes. Biol. Open 5 1516–1529. 10.1242/bio.018648
    1. Iijima K., Ando K., Takeda S., Satoh Y., Seki T., Itohara S., et al. (2000). Neuron-specific phosphorylation of Alzheimer’s beta-amyloid precursor protein by cyclin-dependent kinase 5. J. Neurochem. 75 1085–1091. 10.1046/j.1471-4159.2000.0751085.x
    1. Ikeda M., Yonemura K., Kakuda S., Tashiro Y., Fujita Y., Takai E., et al. (2013). Cerebrospinal fluid levels of phosphorylated tau and Abeta1-38/Abeta1-40/Abeta1-42 in Alzheimer’s disease with PS1 mutations. Amyloid 20 107–112. 10.3109/13506129.2013.790810
    1. Inestrosa N. C., Tapia-Rojas C., Griffith T. N., Carvajal F. J., Benito M. J., Rivera-Dictter A., et al. (2011). Tetrahydrohyperforin prevents cognitive deficit, A beta deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1DeltaE9 model of Alzheimer’s disease: a possible effect on APP processing. Transl. Psychiatry 1:e20. 10.1038/tp.2011.19
    1. Inoue K., Rispoli J., Kaphzan H., Klann E., Chen E. I., Kim J., et al. (2012). Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway. Mol. Neurodegener. 7:48. 10.1186/1750-1326-7-48
    1. Iqbal K., Liu F., Gong C. X., Grundke-Iqbal I. (2010). Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res. 7 656–664. 10.2174/156720510793611592
    1. Irvine G. B., El-Agnaf O. M., Shankar G. M., Walsh D. M. (2008). Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases. Mol. Med. 14 451–464. 10.2119/2007-00100.Irvine
    1. Ishiki A., Kamada M., Kawamura Y., Terao C., Shimoda F., Tomita N., et al. (2016). Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. J. Neurochem. 136 258–261. 10.1111/jnc.13399
    1. Jellinger K. A. (2010). Basic mechanisms of neurodegeneration: a critical update. J. Cell Mol. Med. 14 457–487. 10.1111/j.1582-4934.2010.01010.x
    1. Jiang P., Guo Y., Dang R., Yang M., Liao D., Li H., et al. (2017). Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: involvement of autophagy and NLRP3 inflammasome. J. Neuroinflammation 14:239. 10.1186/s12974-017-1013-4
    1. Jiang T., Yu J. T., Zhu X. C., Tan M. S., Wang H. F., Cao L., et al. (2014). Temsirolimus promotes autophagic clearance of amyloid-beta and provides protective effects in cellular and animal models of Alzheimer’s disease. Pharmacol. Res. 81 54–63. 10.1016/j.phrs.2014.02.008
    1. Jourquin J., Duncan D., Shi Z., Zhang B. (2012). GLAD4U: deriving and prioritizing gene lists from PubMed literature. BMC Genomics 13(Suppl. 8):S20. 10.1186/1471-2164-13-S8-S20
    1. Jung C. H., Ro S. H., Cao J., Otto N. M., Kim D. H. (2010). mTOR regulation of autophagy. FEBS Lett. 584 1287–1295. 10.1016/j.febslet.2010.01.017
    1. Kabeya Y., Mizushima N., Ueno T., Yamamoto A., Kirisako T., Noda T., et al. (2000). LC3 a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19 5720–5728. 10.1093/emboj/19.21.5720
    1. Kamada Y., Funakoshi T., Shintani T., Nagano K., Ohsumi M., Ohsumi Y. (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150 1507–1513. 10.1083/jcb.150.6.1507
    1. Kamphuis W., Middeldorp J., Kooijman L., Sluijs J. A., Kooi E. J., Moeton M., et al. (2014). Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer’s disease. Neurobiol. Aging 35 492–510. 10.1016/j.neurobiolaging.2013.09.035
    1. Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45 D353–D361. 10.1093/nar/gkw1092
    1. Karch C. M., Goate A. M. (2015). Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry 77 43–51. 10.1016/j.biopsych.2014.05.006
    1. Karigar C., Murthy K. R. S. (2005). The Nobel Prize in Chemistry 2004. Resonance 10 41–49. 10.1007/BF02835891
    1. Katona I., Freund T. F. (2012). Multiple functions of endocannabinoid signaling in the brain. Annu. Rev. Neurosci. 35 529–558. 10.1146/annurev-neuro-062111-150420
    1. Kaushik S., Cuervo A. M. (2012). Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22 407–417. 10.1016/j.tcb.2012.05.006
    1. Kickstein E., Krauss S., Thornhill P., Rutschow D., Zeller R., Sharkey J., et al. (2010). Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc. Natl. Acad. Sci. U.S.A. 107 21830–21835. 10.1073/pnas.0912793107
    1. Klionsky D. J. (2008). Autophagy revisited: a conversation with Christian de Duve. Autophagy 4 740–743. 10.4161/auto.6398
    1. Klionsky D. J., Cregg J. M., Dunn W. A., Jr., Emr S. D., Sakai Y., Sandoval I. V., et al. (2003). A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5 539–545. 10.1016/S1534-5807(03)00296-X
    1. Korff A., Liu C., Ginghina C., Shi M., Zhang J. Alzheimer’s Disease Neuroimaging Initiative. (2013). alpha-Synuclein in cerebrospinal fluid of Alzheimer’s disease and mild cognitive impairment. J. Alzheimers Dis. 36 679–688. 10.3233/JAD-130458
    1. Korolainen M. A., Auriola S., Nyman T. A., Alafuzoff I., Pirttila T. (2005). Proteomic analysis of glial fibrillary acidic protein in Alzheimer’s disease and aging brain. Neurobiol. Dis. 20 858–870. 10.1016/j.nbd.2005.05.021
    1. Kruger U., Wang Y., Kumar S., Mandelkow E. M. (2012). Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol. Aging 33 2291–2305. 10.1016/j.neurobiolaging.2011.11.009
    1. Kuma A., Hatano M., Matsui M., Yamamoto A., Nakaya H., Yoshimori T., et al. (2004). The role of autophagy during the early neonatal starvation period. Nature 432 1032–1036. 10.1038/nature03029
    1. Larson M. E., Sherman M. A., Greimel S., Kuskowski M., Schneider J. A., Bennett D. A., et al. (2012). Soluble alpha-synuclein is a novel modulator of Alzheimer’s disease pathophysiology. J. Neurosci. 32 10253–10266. 10.1523/JNEUROSCI.0581-12.2012
    1. Lee J. A., Beigneux A., Ahmad S. T., Young S. G., Gao F. B. (2007). ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol. 17 1561–1567. 10.1016/j.cub.2007.07.029
    1. Lee J. H., Yu W. H., Kumar A., Lee S., Mohan P. S., Peterhoff C. M., et al. (2010). Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141 1146–1158. 10.1016/j.cell.2010.05.008
    1. Letronne F., Laumet G., Ayral A. M., Chapuis J., Demiautte F., Laga M., et al. (2016). ADAM30 downregulates APP-linked defects through cathepsin D activation in Alzheimer’s disease. EBioMedicine 9 278–292. 10.1016/j.ebiom.2016.06.002
    1. Li J., Deng J., Sheng W., Zuo Z. (2012). Metformin attenuates Alzheimer’s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol. Biochem. Behav. 101 564–574. 10.1016/j.pbb.2012.03.002
    1. Li L., Zhang S., Zhang X., Li T., Tang Y., Liu H., et al. (2013). Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-beta pathology in a mouse model of Alzheimer’s disease. Curr. Alzheimer Res. 10 433–441. 10.2174/1567205011310040008
    1. Li S. C., Kane P. M. (2009). The yeast lysosome-like vacuole: endpoint and crossroads. Biochim. Biophys. Acta 1793 650–663. 10.1016/j.bbamcr.2008.08.003
    1. Li T., Hawkes C., Qureshi H. Y., Kar S., Paudel H. K. (2006). Cyclin-dependent protein kinase 5 primes microtubule-associated protein tau site-specifically for glycogen synthase kinase 3beta. Biochemistry 45 3134–3145. 10.1021/bi051635j
    1. Li W., Ye Y. (2008). Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol. Life. Sci. 65 2397–2406. 10.1007/s00018-008-8090-6
    1. Lilienbaum A. (2013). Relationship between the proteasomal system and autophagy. Int. J. Biochem. Mol. Biol. 4 1–26.
    1. Liu D., Pitta M., Jiang H., Lee J. H., Zhang G., Chen X., et al. (2013). Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession. Neurobiol. Aging 34 1564–1580. 10.1016/j.neurobiolaging.2012.11.020
    1. Liu G., Wang H., Liu J., Li J., Li H., Ma G., et al. (2014). The CLU gene rs11136000 variant is significantly associated with Alzheimer’s disease in Caucasian and Asian populations. Neuromolecular Med. 16 52–60. 10.1007/s12017-013-8250-1
    1. Liu R., Barkhordarian H., Emadi S., Park C. B., Sierks M. R. (2005). Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol. Dis. 20 74–81. 10.1016/j.nbd.2005.02.003
    1. Liu S. J., Yang C., Zhang Y., Su R. Y., Chen J. L., Jiao M. M., et al. (2016). Neuroprotective effect of beta-asarone against Alzheimer’s disease: regulation of synaptic plasticity by increased expression of SYP and GluR1. Drug Des. Devel. Ther. 10 1461–1469. 10.2147/DDDT.S93559
    1. Lu B., Nagappan G., Lu Y. (2014). BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol. 220 223–250. 10.1007/978-3-642-45106-5_9
    1. Luccarini I., Grossi C., Rigacci S., Coppi E., Pugliese A. M., Pantano D., et al. (2015). Oleuropein aglycone protects against pyroglutamylated-3 amyloid-ss toxicity: biochemical, epigenetic and functional correlates. Neurobiol. Aging 36 648–663. 10.1016/j.neurobiolaging.2014.08.029
    1. Lucin K. M., O’brien C. E., Bieri G., Czirr E., Mosher K. I., Abbey R. J., et al. (2013). Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron 79 873–886. 10.1016/j.neuron.2013.06.046
    1. Majd S., Chegini F., Chataway T., Zhou X. F., Gai W. (2013). Reciprocal induction between alpha-synuclein and beta-amyloid in adult rat neurons. Neurotox. Res. 23 69–78. 10.1007/s12640-012-9330-y
    1. Manuel I., Gonzalez De San Roman E., Giralt M. T., Ferrer I., Rodriguez-Puertas R. (2014). Type-1 cannabinoid receptor activity during Alzheimer’s disease progression. J. Alzheimers Dis. 42 761–766. 10.3233/JAD-140492
    1. Maphis N., Xu G., Kokiko-Cochran O. N., Cardona A. E., Ransohoff R. M., Lamb B. T., et al. (2015). Loss of tau rescues inflammation-mediated neurodegeneration. Front. Neurosci. 9:196. 10.3389/fnins.2015.00196
    1. Maroof N., Pardon M. C., Kendall D. A. (2013). Endocannabinoid signalling in Alzheimer’s disease. Biochem. Soc. Trans. 41 1583–1587. 10.1042/BST20130140
    1. Martorell M., Forman K., Castro N., Capo X., Tejada S., Sureda A. (2016). Potential therapeutic effects of oleuropein aglycone in Alzheimer’s disease. Curr. Pharm. Biotechnol. 17 994–1001. 10.2174/1389201017666160725120656
    1. Marzella L., Ahlberg J., Glaumann H. (1981). Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 36 219–234.
    1. Matsubara M., Yamagata H., Kamino K., Nomura T., Kohara K., Kondo I., et al. (2001). Genetic association between Alzheimer disease and the alpha-synuclein gene. Dement. Geriatr. Cogn. Disord. 12 106–109. 10.1159/000051243
    1. Matsunaga S., Kishi T., Annas P., Basun H., Hampel H., Iwata N. (2015a). Lithium as a treatment for Alzheimer’s disease: a systematic review and meta-analysis. J. Alzheimers Dis. 48 403–410. 10.3233/JAD-150437
    1. Matsunaga S., Kishi T., Iwata N. (2015b). Memantine monotherapy for Alzheimer’s disease: a systematic review and meta-analysis. PLOS ONE 10:e0123289. 10.1371/journal.pone.0123289
    1. Matsuura A., Tsukada M., Wada Y., Ohsumi Y. (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192 245–250. 10.1016/S0378-1119(97)00084-X
    1. May P. C., Lampert-Etchells M., Johnson S. A., Poirier J., Masters J. N., Finch C. E. (1990). Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron 5 831–839. 10.1016/0896-6273(90)90342-D
    1. McDermott J. R., Gibson A. M. (1996). Degradation of Alzheimer’s beta-amyloid protein by human cathepsin D. Neuroreport 7 2163–2166. 10.1097/00001756-199609020-00021
    1. Meijer A. J., Lorin S., Blommaart E. F., Codogno P. (2015). Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids 47 2037–2063. 10.1007/s00726-014-1765-4
    1. Melendez A., Neufeld T. P. (2008). The cell biology of autophagy in metazoans: a developing story. Development 135 2347–2360. 10.1242/dev.016105
    1. Messai Y., Noman M. Z., Hasmim M., Janji B., Tittarelli A., Boutet M., et al. (2014). ITPR1 protects renal cancer cells against natural killer cells by inducing autophagy. Cancer Res. 74 6820–6832. 10.1158/0008-5472.CAN-14-0303
    1. Metcalf D. J., Garcia-Arencibia M., Hochfeld W. E., Rubinsztein D. C. (2012). Autophagy and misfolded proteins in neurodegeneration. Exp. Neurol. 238 22–28. 10.1016/j.expneurol.2010.11.003
    1. Miners J. S., Clarke P., Love S. (2017). Clusterin levels are increased in Alzheimer’s disease and influence the regional distribution of Abeta. Brain Pathol. 27 305–313. 10.1111/bpa.12392
    1. Mirnics K., Norstrom E. M., Garbett K., Choi S. H., Zhang X., Ebert P., et al. (2008). Molecular signatures of neurodegeneration in the cortex of PS1/PS2 double knockout mice. Mol. Neurodegener. 3:14. 10.1186/1750-1326-3-14
    1. Mizushima N., Komatsu M. (2011). Autophagy: renovation of cells and tissues. Cell 147 728–741. 10.1016/j.cell.2011.10.026
    1. Mizushima N., Yamamoto A., Matsui M., Yoshimori T., Ohsumi Y. (2004). In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15 1101–1111. 10.1091/mbc.E03-09-0704
    1. Mo C., Peng Q., Sui J., Wang J., Deng Y., Xie L., et al. (2014). Lack of association between cathepsin D C224T polymorphism and Alzheimer’s disease risk: an update meta-analysis. BMC Neurol. 14:13. 10.1186/1471-2377-14-13
    1. Mohammadi M., Guan J., Khodagholi F., Yans A., Khalaj S., Gholami M., et al. (2016). Reduction of autophagy markers mediated protective effects of JNK inhibitor and bucladesine on memory deficit induced by A beta in rats. Naunyn Schmiedebergs Arch. Pharmacol. 389 501–510. 10.1007/s00210-016-1222-x
    1. Mulder S. D., Nielsen H. M., Blankenstein M. A., Eikelenboom P., Veerhuis R. (2014). Apolipoproteins E and J interfere with amyloid-beta uptake by primary human astrocytes and microglia in vitro. Glia 62 493–503. 10.1002/glia.22619
    1. Mullan G. M., Mceneny J., Fuchs M., Mcmaster C., Todd S., Mcguinness B., et al. (2013). Plasma clusterin levels and the rs11136000 genotype in individuals with mild cognitive impairment and Alzheimer’s disease. Curr. Alzheimer Res. 10 973–978. 10.2174/15672050113106660162
    1. Nah J., Pyo J. O., Jung S., Yoo S. M., Kam T. I., Chang J., et al. (2013). BECN1/Beclin 1 is recruited into lipid rafts by prion to activate autophagy in response to amyloid beta 42. Autophagy 9 2009–2021. 10.4161/auto.26118
    1. Nakatogawa H. (2013). Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem. 55 39–50. 10.1042/bse0550039
    1. Nakatogawa H., Ichimura Y., Ohsumi Y. (2007). Atg8 a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130 165–178. 10.1016/j.cell.2007.05.021
    1. Natunen T., Takalo M., Kemppainen S., Leskela S., Marttinen M., Kurkinen K. M. A., et al. (2016). Relationship between ubiquilin-1 and BACE1 in human Alzheimer’s disease and APdE9 transgenic mouse brain and cell-based models. Neurobiol. Dis. 85 187–205. 10.1016/j.nbd.2015.11.005
    1. N’Diaye E. N., Kajihara K. K., Hsieh I., Morisaki H., Debnath J., Brown E. J. (2009). PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep. 10 173–179. 10.1038/embor.2008.238
    1. Neely K. M., Green K. N. (2011). Presenilins mediate efficient proteolysis via the autophagosome-lysosome system. Autophagy 7 664–665. 10.4161/auto.7.6.15448
    1. Nilsson P., Loganathan K., Sekiguchi M., Matsuba Y., Hui K., Tsubuki S., et al. (2013). A beta secretion and plaque formation depend on autophagy. Cell Rep. 5 61–69. 10.1016/j.celrep.2013.08.042
    1. Nilsson P., Saido T. C. (2014). Dual roles for autophagy: degradation and secretion of Alzheimer’s disease Abeta peptide. Bioessays 36 570–578. 10.1002/bies.201400002
    1. Nilsson P., Sekiguchi M., Akagi T., Izumi S., Komori T., Hui K., et al. (2015). Autophagy-related protein 7 deficiency in amyloid beta (A beta) precursor protein transgenic mice decreases Abeta in the multivesicular bodies and induces Abeta accumulation in the Golgi. Am. J. Pathol. 185 305–313. 10.1016/j.ajpath.2014.10.011
    1. Nixon R. A. (2007). Autophagy, amyloidogenesis and Alzheimer disease. J. Cell Sci. 120 4081–4091. 10.1242/jcs.019265
    1. Nixon R. A., Wegiel J., Kumar A., Yu W. H., Peterhoff C., Cataldo A., et al. (2005). Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64 113–122. 10.1093/jnen/64.2.113
    1. (2017). The Nobel Prize in Physiology or Medicine 2016 [Online]. Nobel Media AB 2014. Available at:
    1. Noble W., Olm V., Takata K., Casey E., Mary O., Meyerson J., et al. (2003). Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38 555–565. 10.1016/S0896-6273(03)00259-9
    1. Nowacek A., Kosloski L. M., Gendelman H. E. (2009). Neurodegenerative disorders and nanoformulated drug development. Nanomedicine (Lond) 4 541–555. 10.2217/nnm.09.37
    1. Ntais C., Polycarpou A., Ioannidis J. P. (2004). Meta-analysis of the association of the cathepsin D Ala224Val gene polymorphism with the risk of Alzheimer’s disease: a HuGE gene-disease association review. Am. J. Epidemiol. 159 527–536. 10.1093/aje/kwh069
    1. Oddo S., Caccamo A., Smith I. F., Green K. N., Laferla F. M. (2006). A dynamic relationship between intracellular and extracellular pools of Abeta. Am. J. Pathol. 168 184–194. 10.2353/ajpath.2006.050593
    1. Ohsumi Y. (2014). Historical landmarks of autophagy research. Cell Res. 24 9–23. 10.1038/cr.2013.169
    1. Oikawa T., Nonaka T., Terada M., Tamaoka A., Hisanaga S., Hasegawa M. (2016). alpha-Synuclein fibrils exhibit gain of toxic function, promoting tau aggregation and inhibiting microtubule assembly. J. Biol. Chem. 291 15046–15056. 10.1074/jbc.M116.736355
    1. Oksman M., Wisman L. A., Jiang H., Miettinen P., Kirik D., Tanila H. (2013). Transduced wild-type but not P301S mutated human tau shows hyperphosphorylation in transgenic mice overexpressing A30P mutated human alpha-synuclein. Neurodegener. Dis. 12 91–102. 10.1159/000341596
    1. Okuma T., Kishimoto A. (1998). A history of investigation on the mood stabilizing effect of carbamazepine in Japan. Psychiatry Clin. Neurosci. 52 3–12. 10.1111/j.1440-1819.1998.tb00966.x
    1. Olah Z., Kalman J., Toth M. E., Zvara A., Santha M., Ivitz E., et al. (2015). Proteomic analysis of cerebrospinal fluid in Alzheimer’s disease: wanted dead or alive. J. Alzheimers Dis. 44 1303–1312. 10.3233/JAD-140141
    1. Onodera J., Ohsumi Y. (2005). Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem. 280 31582–31586. 10.1074/jbc.M506736200
    1. Pacheco C. D., Elrick M. J., Lieberman A. P. (2009). Tau deletion exacerbates the phenotype of Niemann-Pick type C mice and implicates autophagy in pathogenesis. Hum. Mol. Genet. 18 956–965. 10.1093/hmg/ddn423
    1. Parenti G., Pignata C., Vajro P., Salerno M. (2013). New strategies for the treatment of lysosomal storage diseases (review). Int. J. Mol. Med. 31 11–20. 10.3892/ijmm.2012.1187
    1. Paroni G., Seripa D., Fontana A., D’onofrio G., Gravina C., Urbano M., et al. (2014). FOXO1 locus and acetylcholinesterase inhibitors in elderly patients with Alzheimer’s disease. Clin. Interv. Aging 9 1783–1791. 10.2147/CIA.S64758
    1. Paz-Y-Miño C. A., Garcia-Cardenas J. M., Lopez-Cortes A., Salazar C., Serrano M., Leone P. E. (2015). Positive association of the cathepsin D Ala224Val gene polymorphism with the risk of Alzheimer’s disease. Am. J. Med. Sci. 350 296–301. 10.1097/MAJ.0000000000000555
    1. Perez M., Santa-Maria I., Gomez De Barreda E., Zhu X., Cuadros R., Cabrero J. R., et al. (2009). Tau–an inhibitor of deacetylase HDAC6 function. J. Neurochem. 109 1756–1766. 10.1111/j.1471-4159.2009.06102.x
    1. Perez S. E., He B., Nadeem M., Wuu J., Scheff S. W., Abrahamson E. E., et al. (2015). Resilience of precuneus neurotrophic signaling pathways despite amyloid pathology in prodromal Alzheimer’s disease. Biol. Psychiatry 77 693–703. 10.1016/j.biopsych.2013.12.016
    1. Phelan M. J., Mulnard R. A., Gillen D. L., Schreiber S. S. (2017). Phase II clinical trial of nicotinamide for the treatment of mild to moderate Alzheimer’s disease. J. Geriatr. Med. Gerontol. 3:021.
    1. Pickford F., Masliah E., Britschgi M., Lucin K., Narasimhan R., Jaeger P. A., et al. (2008). The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 118 2190–2199. 10.1172/JCI33585
    1. Piyanova A., Albayram O., Rossi C. A., Farwanah H., Michel K., Nicotera P., et al. (2013). Loss of CB1 receptors leads to decreased cathepsin D levels and accelerated lipofuscin accumulation in the hippocampus. Mech. Ageing Dev. 134 391–399. 10.1016/j.mad.2013.08.001
    1. Poon W. W., Carlos A. J., Aguilar B. L., Berchtold N. C., Kawano C. K., Zograbyan V., et al. (2013). beta-Amyloid (A beta) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1. J. Biol. Chem. 288 16937–16948. 10.1074/jbc.M113.463711
    1. Porquet D., Grinan-Ferre C., Ferrer I., Camins A., Sanfeliu C., Del Valle J., et al. (2014). Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J. Alzheimers Dis. 42 1209–1220. 10.3233/JAD-140444
    1. Portbury S. D., Hare D. J., Sgambelloni C., Perronnes K., Portbury A. J., Finkelstein D. I., et al. (2017). Trehalose improves cognition in the transgenic Tg2576 mouse model of Alzheimer’s disease. J. Alzheimers Dis. 60 549–560. 10.3233/JAD-170322
    1. Posada-Duque R. A., Lopez-Tobon A., Piedrahita D., Gonzalez-Billault C., Cardona-Gomez G. P. (2015). p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing. J. Neurochem. 134 354–370. 10.1111/jnc.13127
    1. Qu J., Nakamura T., Cao G., Holland E. A., Mckercher S. R., Lipton S. A. (2011). S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc. Natl. Acad. Sci. U.S.A. 108 14330–14335. 10.1073/pnas.1105172108
    1. Quinn J. G., Coulson D. T., Brockbank S., Beyer N., Ravid R., Hellemans J., et al. (2012). alpha-Synuclein mRNA and soluble alpha-synuclein protein levels in post-mortem brain from patients with Parkinson’s disease, dementia with Lewy bodies, and Alzheimer’s disease. Brain Res. 1459 71–80. 10.1016/j.brainres.2012.04.018
    1. Rademakers R., Sleegers K., Theuns J., Van Den Broeck M., Bel Kacem S., Nilsson L. G., et al. (2005). Association of cyclin-dependent kinase 5 and neuronal activators p35 and p39 complex in early-onset Alzheimer’s disease. Neurobiol. Aging 26 1145–1151. 10.1016/j.neurobiolaging.2004.10.003
    1. Ramirez B. G., Blazquez C., Gomez Del Pulgar T., Guzman M., De Ceballos M. L. (2005). Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J. Neurosci. 25 1904–1913. 10.1523/JNEUROSCI.4540-04.2005
    1. Riemenschneider M., Blennow K., Wagenpfeil S., Andreasen N., Prince J. A., Laws S. M., et al. (2006). The cathepsin D rs17571 polymorphism: effects on CSF tau concentrations in Alzheimer disease. Hum. Mutat. 27 532–537. 10.1002/humu.20326
    1. Roberts H. L., Schneider B. L., Brown D. R. (2017). alpha-Synuclein increases beta-amyloid secretion by promoting beta-/gamma-secretase processing of APP. PLOS ONE 12:e0171925. 10.1371/journal.pone.0171925
    1. Rogel M. R., Jaitovich A., Ridge K. M. (2010). The role of the ubiquitin proteasome pathway in keratin intermediate filament protein degradation. Proc. Am. Thorac. Soc. 7 71–76. 10.1513/pats.200908-089JS
    1. Rohn T. T., Vyas V., Hernandez-Estrada T., Nichol K. E., Christie L. A., Head E. (2008). Lack of pathology in a triple transgenic mouse model of Alzheimer’s disease after overexpression of the anti-apoptotic protein Bcl-2. J. Neurosci. 28 3051–3059. 10.1523/JNEUROSCI.5620-07.2008
    1. Rothenberg C., Srinivasan D., Mah L., Kaushik S., Peterhoff C. M., Ugolino J., et al. (2010). Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum. Mol. Genet. 19 3219–3232. 10.1093/hmg/ddq231
    1. Rubinsztein D. C., Marino G., Kroemer G. (2011). Autophagy and aging. Cell 146 682–695. 10.1016/j.cell.2011.07.030
    1. Rusten T. E., Stenmark H. (2009). How do ESCRT proteins control autophagy? J. Cell Sci. 122 2179–2183. 10.1242/jcs.050021
    1. Sadleir K. R., Vassar R. (2012). Cdk5 protein inhibition and Abeta42 increase BACE1 protein level in primary neurons by a post-transcriptional mechanism: implications of CDK5 as a therapeutic target for Alzheimer disease. J. Biol. Chem. 287 7224–7235. 10.1074/jbc.M111.333914
    1. Saido T., Leissring M. A. (2012). Proteolytic degradation of amyloid beta-protein. Cold Spring Harb. Perspect. Med. 2:a006379. 10.1101/cshperspect.a006379
    1. Santulli G., Marks A. R. (2015). Essential roles of intracellular calcium release channels in muscle, brain, metabolism, and aging. Curr. Mol. Pharmacol. 8 206–222. 10.2174/1874467208666150507105105
    1. Sarkar S., Davies J. E., Huang Z., Tunnacliffe A., Rubinsztein D. C. (2007). Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem. 282 5641–5652. 10.1074/jbc.M609532200
    1. Sarkar S., Floto R. A., Berger Z., Imarisio S., Cordenier A., Pasco M., et al. (2005). Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 170 1101–1111. 10.1083/jcb.200504035
    1. Satoh J., Tabunoki H., Ishida T., Saito Y., Arima K. (2013). Ubiquilin-1 immunoreactivity is concentrated on Hirano bodies and dystrophic neurites in Alzheimer’s disease brains. Neuropathol. Appl. Neurobiol. 39 817–830. 10.1111/nan.12036
    1. Schuur M., Ikram M. A., Van Swieten J. C., Isaacs A., Vergeer-Drop J. M., Hofman A., et al. (2011). Cathepsin D gene and the risk of Alzheimer’s disease: a population-based study and meta-analysis. Neurobiol. Aging 32 1607–1614. 10.1016/j.neurobiolaging.2009.10.011
    1. Settembre C., Fraldi A., Medina D. L., Ballabio A. (2013). Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14 283–296. 10.1038/nrm3565
    1. Seyb K. I., Ansar S., Li G., Bean J., Michaelis M. L., Dobrowsky R. T. (2007). p35/Cyclin-dependent kinase 5 is required for protection against beta-amyloid-induced cell death but not tau phosphorylation by ceramide. J. Mol. Neurosci. 31 23–35. 10.1007/BF02686115
    1. Shao B. Z., Wei W., Ke P., Xu Z. Q., Zhou J. X., Liu C. (2014). Activating cannabinoid receptor 2 alleviates pathogenesis of experimental autoimmune encephalomyelitis via activation of autophagy and inhibiting NLRP3 inflammasome. CNS Neurosci. Ther. 20 1021–1028. 10.1111/cns.12349
    1. Shen H. M., Mizushima N. (2014). At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem. Sci. 39 61–71. 10.1016/j.tibs.2013.12.001
    1. Sheng Y., Zhang L., Su S. C., Tsai L. H., Julius Zhu J. (2016). Cdk5 is a new rapid synaptic homeostasis regulator capable of initiating the early Alzheimer-like pathology. Cereb. Cortex 26 2937–2951. 10.1093/cercor/bhv032
    1. Shibata N., Motoi Y., Tomiyama H., Ohnuma T., Kuerban B., Tomson K., et al. (2012). Lack of genetic association of the UCHL1 gene with Alzheimer’s disease and Parkinson’s disease with dementia. Dement. Geriatr. Cogn. Disord. 33 250–254. 10.1159/000339357
    1. Shilling D., Muller M., Takano H., Mak D. O., Abel T., Coulter D. A., et al. (2014). Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer’s disease pathogenesis. J. Neurosci. 34 6910–6923. 10.1523/JNEUROSCI.5441-13.2014
    1. Shuai P., Liu Y., Lu W., Liu Q., Li T., Gong B. (2015). Genetic associations of CLU rs9331888 polymorphism with Alzheimer’s disease: a meta-analysis. Neurosci. Lett. 591 160–165. 10.1016/j.neulet.2015.02.040
    1. Shukla V., Zheng Y. L., Mishra S. K., Amin N. D., Steiner J., Grant P., et al. (2013). A truncated peptide from p35 a Cdk5 activator, prevents Alzheimer’s disease phenotypes in model mice. FASEB J. 27 174–186. 10.1096/fj.12-217497
    1. Singh M., Jensen M. D., Lerman A., Kushwaha S., Rihal C. S., Gersh B. J., et al. (2016). Effect of low-dose rapamycin on senescence markers and physical functioning in older adults with coronary artery disease: results of a pilot study. J Frailty Aging 5 204–207.
    1. Sofroniew M. V., Vinters H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathol. 119 7–35. 10.1007/s00401-009-0619-8
    1. Solas M., Francis P. T., Franco R., Ramirez M. J. (2013). CB2 receptor and amyloid pathology in frontal cortex of Alzheimer’s disease patients. Neurobiol. Aging 34 805–808. 10.1016/j.neurobiolaging.2012.06.005
    1. Somavarapu A. K., Kepp K. P. (2016). Loss of stability and hydrophobicity of presenilin 1 mutations causing Alzheimer’s disease. J. Neurochem. 137 101–111. 10.1111/jnc.13535
    1. Song G., Li Y., Lin L., Cao Y. (2015). Anti-autophagic and anti-apoptotic effects of memantine in a SH-SY5Y cell model of Alzheimer’s disease via mammalian target of rapamycin-dependent and -independent pathways. Mol. Med. Rep. 12 7615–7622. 10.3892/mmr.2015.4382
    1. Song W. J., Son M. Y., Lee H. W., Seo H., Kim J. H., Chung S. H. (2015). Enhancement of BACE1 activity by p25/Cdk5-mediated phosphorylation in Alzheimer’s disease. PLOS ONE 10:e0136950. 10.1371/journal.pone.0136950
    1. Spilman P., Podlutskaya N., Hart M. J., Debnath J., Gorostiza O., Bredesen D., et al. (2010). Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLOS ONE 5:e9979. 10.1371/journal.pone.0009979
    1. Steele J. W., Fan E., Kelahmetoglu Y., Tian Y., Bustos V. (2013). Modulation of autophagy as a therapeutic target for Alzheimer’s disease. Postdoc. J. 1 21–34. 10.14304/SURYA.JPR.V1N2.3
    1. Steele J. W., Gandy S. (2013). Latrepirdine (Dimebon(R)), a potential Alzheimer therapeutic, regulates autophagy and neuropathology in an Alzheimer mouse model. Autophagy 9 617–618. 10.4161/auto.23487
    1. Stevens B. W., Dibattista A. M., William Rebeck G., Green A. E. (2014). A gene-brain-cognition pathway for the effect of an Alzheimers risk gene on working memory in young adults. Neuropsychologia 61 143–149. 10.1016/j.neuropsychologia.2014.06.021
    1. Stieren E. S., El Ayadi A., Xiao Y., Siller E., Landsverk M. L., Oberhauser A. F., et al. (2011). Ubiquilin-1 is a molecular chaperone for the amyloid precursor protein. J. Biol. Chem. 286 35689–35698. 10.1074/jbc.M111.243147
    1. Sun Y. X., Ji X., Mao X., Xie L., Jia J., Galvan V., et al. (2014). Differential activation of mTOR complex 1 signaling in human brain with mild to severe Alzheimer’s disease. J. Alzheimers Dis. 38 437–444. 10.3233/JAD-131124
    1. Szklarczyk D., Morris J. H., Cook H., Kuhn M., Wyder S., Simonovic M., et al. (2017). The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45 D362–D368. 10.1093/nar/gkw937
    1. Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119 301–311. 10.1083/jcb.119.2.301
    1. Tanaka K., Suzuki T., Hattori N., Mizuno Y. (2004). Ubiquitin, proteasome and parkin. Biochim. Biophys. Acta 1695 235–247. 10.1016/j.bbamcr.2004.09.026
    1. Tang Z., Ioja E., Bereczki E., Hultenby K., Li C., Guan Z., et al. (2015). mTor mediates tau localization and secretion: Implication for Alzheimer’s disease. Biochim. Biophys. Acta 1853 1646–1657. 10.1016/j.bbamcr.2015.03.003
    1. The Nobel Assembly at Karolinska Institutet (2016). Scientific Background Discoveries of Mechanisms for Autophagy. Stockholm: The Nobel Assembly at Karolinska Institutet.
    1. Tian L., Zhang K., Tian Z. Y., Wang T., Shang D. S., Li B., et al. (2014). Decreased expression of cathepsin D in monocytes is related to the defective degradation of amyloid-beta in Alzheimer’s disease. J. Alzheimers Dis. 42 511–520. 10.3233/JAD-132192
    1. Tian Y., Bustos V., Flajolet M., Greengard P. (2011). A small-molecule enhancer of autophagy decreases levels of A beta and APP-CTF via Atg5-dependent autophagy pathway. FASEB J. 25 1934–1942. 10.1096/fj.10-175158
    1. Tsukada M., Ohsumi Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333 169–174. 10.1016/0014-5793(93)80398-E
    1. Turner R. S., Thomas R. G., Craft S., Van Dyck C. H., Mintzer J., Reynolds B. A., et al. (2015). A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85 1383–1391. 10.1212/WNL.0000000000002035
    1. Uddin M. S., Mamun A. A., Hossain M. S., Asaduzzaman M., Noor M. A. A., Hossain M. S., et al. (2016). Neuroprotective effect of Phyllanthus acidus L. on learning and memory impairment in a scopolamine-induced animal model of dementia and oxidative stress: natural wonder for regulating the development and progression of Alzheimer’s disease. Adv. Alzheimers Dis. 5 53–72. 10.4236/aad.2016.52005
    1. Ueda K., Fukushima H., Masliah E., Xia Y., Iwai A., Yoshimoto M., et al. (1993). Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 90 11282–11286. 10.1073/pnas.90.23.11282
    1. Uhlen M., Fagerberg L., Hallstrom B. M., Lindskog C., Oksvold P., Mardinoglu A., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science 347:1260419. 10.1126/science.1260419
    1. Urbanelli L., Emiliani C., Massini C., Persichetti E., Orlacchio A., Pelicci G., et al. (2008). Cathepsin D expression is decreased in Alzheimer’s disease fibroblasts. Neurobiol. Aging 29 12–22. 10.1016/j.neurobiolaging.2006.09.005
    1. Vingtdeux V., Giliberto L., Zhao H., Chandakkar P., Wu Q., Simon J. E., et al. (2010). AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem. 285 9100–9113. 10.1074/jbc.M109.060061
    1. Wang Q., Tian Q., Song X., Liu Y., Li W. (2016). SNCA gene polymorphism may contribute to an increased risk of Alzheimer’s disease. J. Clin. Lab. Anal. 30 1092–1099. 10.1002/jcla.21986
    1. Weissman A. M. (2001). Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol. 2 169–178. 10.1038/35056563
    1. Wong A. S., Lee R. H., Cheung A. Y., Yeung P. K., Chung S. K., Cheung Z. H., et al. (2011). Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson’s disease. Nat. Cell Biol. 13 568–579. 10.1038/ncb2217
    1. Xiao H., Su Y., Cao X., Sun S., Liang Z. (2010). A meta-analysis of mood stabilizers for Alzheimer’s disease. J. Huazhong Univ. Sci. Technol. Med. Sci. 30 652–658. 10.1007/s11596-010-0559-5
    1. Xie M., Han Y., Yu Q., Wang X., Wang S., Liao X. (2016). UCH-L1 inhibition decreases the microtubule-binding function of tau protein. J. Alzheimers Dis. 49 353–363. 10.3233/JAD-150032
    1. Xu H., Ren D. (2015). Lysosomal physiology. Annu. Rev. Physiol. 77 57–80. 10.1146/annurev-physiol-021014-071649
    1. Xu P., Das M., Reilly J., Davis R. J. (2011). JNK regulates FoxO-dependent autophagy in neurons. Genes Dev. 25 310–322. 10.1101/gad.1984311
    1. Xue S., Jia J. (2006). Genetic association between Ubiquitin Carboxy-terminal Hydrolase-L1 gene S18Y polymorphism and sporadic Alzheimer’s disease in a Chinese Han population. Brain Res. 1087 28–32. 10.1016/j.brainres.2006.02.121
    1. Xue Z., Zhang S., Huang L., He Y., Fang R., Fang Y. (2013). Upexpression of Beclin-1-dependent autophagy protects against beta-amyloid-induced cell injury in PC12 cells. J. Mol. Neurosci. 51 180–186. 10.1007/s12031-013-9974-y
    1. Yamazaki Y., Takahashi T., Hiji M., Kurashige T., Izumi Y., Yamawaki T., et al. (2010). Immunopositivity for ESCRT-III subunit CHMP2B in granulovacuolar degeneration of neurons in the Alzheimer’s disease hippocampus. Neurosci. Lett. 477 86–90. 10.1016/j.neulet.2010.04.038
    1. Yan J. Q., Yuan Y. H., Gao Y. N., Huang J. Y., Ma K. L., Gao Y., et al. (2014). Overexpression of human E46K mutant alpha-synuclein impairs macroautophagy via inactivation of JNK1-Bcl-2 pathway. Mol. Neurobiol. 50 685–701. 10.1007/s12035-014-8738-1
    1. Yang T. T., Hsu C. T., Kuo Y. M. (2009). Amyloid precursor protein, heat-shock proteins, and Bcl-2 form a complex in mitochondria and modulate mitochondria function and apoptosis in N2a cells. Mech. Ageing Dev. 130 592–601. 10.1016/j.mad.2009.07.002
    1. Yang Z., Wang K. K. (2015). Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 38 364–374. 10.1016/j.tins.2015.04.003
    1. Ye J., Jiang Z., Chen X., Liu M., Li J., Liu N. (2017). The role of autophagy in pro-inflammatory responses of microglia activation via mitochondrial reactive oxygen species in vitro. J. Neurochem. 142 215–230. 10.1111/jnc.14042
    1. Yoshimoto M., Iwai A., Kang D., Otero D. A., Xia Y., Saitoh T. (1995). NACP, the precursor protein of the non-amyloid beta/A4 protein (A beta) component of Alzheimer disease amyloid, binds A beta and stimulates A beta aggregation. Proc. Natl. Acad. Sci. U.S.A. 92 9141–9145. 10.1073/pnas.92.20.9141
    1. Yu W. H., Cuervo A. M., Kumar A., Peterhoff C. M., Schmidt S. D., Lee J. H., et al. (2005). Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J. Cell Biol. 171 87–98. 10.1083/jcb.200505082
    1. Yue Z., Wang S., Yan W., Zhu F. (2015). Association of UBQ-8i polymorphism with Alzheimer’s disease in Caucasians: a meta-analysis. Int. J. Neurosci. 125 395–401. 10.3109/00207454.2014.943369
    1. Zhang F., Jiang L. (2015). Neuroinflammation in Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 11 243–256. 10.2147/NDT.S75546
    1. Zhang F., Kumano M., Beraldi E., Fazli L., Du C., Moore S., et al. (2014). Clusterin facilitates stress-induced lipidation of LC3 and autophagosome biogenesis to enhance cancer cell survival. Nat. Commun. 5:5775. 10.1038/ncomms6775
    1. Zhang L., Wang L., Wang R., Gao Y., Che H., Pan Y., et al. (2017). Evaluating the effectiveness of GTM-1 rapamycin, and carbamazepine on autophagy and Alzheimer disease. Med. Sci. Monit. 23 801–808. 10.12659/MSM.898679
    1. Zhang M., Cai F., Zhang S., Song W. (2014). Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer’s progression in vivo. Sci. Rep. 4:7298. 10.1038/srep07298
    1. Zhang P., Qin W., Wang D., Liu B., Zhang Y., Jiang T., et al. (2015). Impacts of PICALM and CLU variants associated with Alzheimer’s disease on the functional connectivity of the hippocampus in healthy young adults. Brain Struct. Funct. 220 1463–1475. 10.1007/s00429-014-0738-4
    1. Zhang T., Jia Y. (2014). Meta-analysis of Ubiquilin1 gene polymorphism and Alzheimer’s disease risk. Med. Sci. Monit. 20 2250–2255. 10.12659/MSM.891030
    1. Zhang Y., Mclaughlin R., Goodyer C., Leblanc A. (2002). Selective cytotoxicity of intracellular amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons. J. Cell Biol. 156 519–529. 10.1083/jcb.200110119
    1. Zhou X., Zhou J., Li X., Guo C., Fang T., Chen Z. (2011). GSK-3beta inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury. Biochem. Biophys. Res. Commun. 411 271–275. 10.1016/j.bbrc.2011.06.117
    1. Zhou Y., Hayashi I., Wong J., Tugusheva K., Renger J. J., Zerbinatti C. (2014). Intracellular clusterin interacts with brain isoforms of the bridging integrator 1 and with the microtubule-associated protein Tau in Alzheimer’s disease. PLOS ONE 9:e103187. 10.1371/journal.pone.0103187
    1. Zhu Z., Yan J., Jiang W., Yao X. G., Chen J., Chen L., et al. (2013). Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both beta-amyloid production and clearance. J. Neurosci. 33 13138–13149. 10.1523/JNEUROSCI.4790-12.2013

Source: PubMed

3
Sottoscrivi