Upper limb evaluation and one-year follow up of non-ambulant patients with spinal muscular atrophy: an observational multicenter trial

Andreea Mihaela Seferian, Amélie Moraux, Aurélie Canal, Valérie Decostre, Oumar Diebate, Anne Gaëlle Le Moing, Teresa Gidaro, Nicolas Deconinck, Frauke Van Parys, Wendy Vereecke, Sylvia Wittevrongel, Mélanie Annoussamy, Michèle Mayer, Kim Maincent, Jean-Marie Cuisset, Vincent Tiffreau, Severine Denis, Virginie Jousten, Susana Quijano-Roy, Thomas Voit, Jean-Yves Hogrel, Laurent Servais, Andreea Mihaela Seferian, Amélie Moraux, Aurélie Canal, Valérie Decostre, Oumar Diebate, Anne Gaëlle Le Moing, Teresa Gidaro, Nicolas Deconinck, Frauke Van Parys, Wendy Vereecke, Sylvia Wittevrongel, Mélanie Annoussamy, Michèle Mayer, Kim Maincent, Jean-Marie Cuisset, Vincent Tiffreau, Severine Denis, Virginie Jousten, Susana Quijano-Roy, Thomas Voit, Jean-Yves Hogrel, Laurent Servais

Abstract

Assessment of the upper limb strength in non-ambulant neuromuscular patients remains challenging. Although potential outcome measures have been reported, longitudinal data demonstrating sensitivity to clinical evolution in spinal muscular atrophy patients are critically lacking. Our study recruited 23 non-ambulant patients, 16 patients (males/females = 6/10; median age 15.4 years with a range from 10.7 to 31.1 years) with spinal muscular atrophy type II and 7 patients (males/females = 2/5; median age 19.9 years with a range from 8.3 to 29.9 years) with type III. The Brooke functional score was on median 3 with a range from 2 to 6. The average total vital capacity was 46%, and seven patients required non-invasive ventilation at night. Patients were assessed at baseline, 6 months, and 1 year using the Motor Function Measure and innovative devices MyoGrip, MyoPinch, and MoviPlate, which assess handgrip strength, key pinch strength, and hand/finger extension-flexion function, respectively. The study demonstrated the feasibility and reliability of these measures for all patients, and sensitivity to negative changes after the age of 14 years. The younger patients showed an increase of the distal force in the follow-up period. The distal force measurements and function were correlated to different functional scales. These data represent an important step in the process of validating these devices as potential outcome measures for future clinical trials.

Trial registration: ClinicalTrials.gov NCT00993161.

Conflict of interest statement

Competing Interests: JYH is inventor of the MyoGrip. JYH and AM are co-inventors of the MyoPinch. JYH, AC, LS and TV are co-inventors of the MoviPlate. This does not alter the authors' adherence to all PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Flow chart of patients included…
Fig 1. Flow chart of patients included in the clinical protocol.
Fig 2. Reliability test.
Fig 2. Reliability test.
Reliability of test and retest sessions for (A) grip, (B) pinch, and (C) MoviPlate for all SMA patients for the non-dominant hands (dark dots) and the dominant hands (clear dots).
Fig 3. Correlations between clinical parameters and…
Fig 3. Correlations between clinical parameters and MyoSets measurements at baseline.
Correlations at baseline between grip, pinch, or MoviPlate on the dominant side and time spent in the wheelchair, Brooke score, or MFM total score for SMA type II (orange triangles) and type III (purple dots) patients.
Fig 4. MoviPlate correlations with grip and…
Fig 4. MoviPlate correlations with grip and pinch strength.
Correlations at baseline between the MoviPlate scores and grip and pinch strength for all SMA patients for the non-dominant hands (dark dots) and the dominant hands (clear dots).
Fig 5. Follow-up MyoSets data and MFM…
Fig 5. Follow-up MyoSets data and MFM scores for all SMA patients.
Data at 6 months and at one year for all SMA patients for (A) grip, (B) pinch, and (C) MoviPlate on the dominant (D) and non-dominant (ND) sides and for (D) MFM-D3 and MFM-Total scores. SMA type II for whom data at 6 months and one year are lacking are marked with orange triangles; for type II patients for whom data were obtained at both time points, the orange interrupted line represents their evolution. The purple solid lines represent the evolution of SMA type 3 patients. The age of 14 is marked with a vertical dotted line.

References

    1. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155–65.
    1. Mercuri E, Bertini E, Iannaccone ST. Childhood spinal muscular atrophy: controversies and challenges. Lancet Neurol. 2012;11(5):443–52. 10.1016/S1474-4422(12)70061-3
    1. Munsat TL, Davies KE. International SMA consortium meeting. (26–28 June 1992, Bonn, Germany). Neuromuscul Disord. 1992;2(5–6):423–8.
    1. Schroth MK. Special considerations in the respiratory management of spinal muscular atrophy. Pediatrics. 2009;123 Suppl 4:S245–9. 10.1542/peds.2008-2952K
    1. Rudnik-Schoneborn S, Hausmanowa-Petrusewicz I, Borkowska J, Zerres K. The predictive value of achieved motor milestones assessed in 441 patients with infantile spinal muscular atrophy types II and III. Eur Neurol. 2001;45(3):174–81.
    1. Russman BS, Buncher CR, White M, Samaha FJ, Iannaccone ST. Function changes in spinal muscular atrophy II and III. The DCN/SMA Group. Neurology. 1996;47(4):973–6.
    1. Farrar MA, Vucic S, Johnston HM, du Sart D, Kiernan MC. Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J Pediatr. 2013;162(1):155–9. 10.1016/j.jpeds.2012.05.067
    1. Berard C, Payan C, Hodgkinson I, Fermanian J. A motor function measure for neuromuscular diseases. Construction and validation study. Neuromuscul Disord. 2005;15(7):463–70.
    1. Nelson L, Owens H, Hynan LS, Iannaccone ST. The gross motor function measure is a valid and sensitive outcome measure for spinal muscular atrophy. Neuromuscul Disord. 2006;16(6):374–80.
    1. Main M, Kairon H, Mercuri E, Muntoni F. The Hammersmith functional motor scale for children with spinal muscular atrophy: a scale to test ability and monitor progress in children with limited ambulation. Eur J Paediatr Neurol. 2003;7(4):155–9.
    1. Mercuri E, Messina S, Battini R, Berardinelli A, Boffi P, Bono R, et al. Reliability of the Hammersmith functional motor scale for spinal muscular atrophy in a multicentric study. Neuromuscul Disord. 2006;16(2):93–8.
    1. Mazzone E, Bianco F, Martinelli D, Glanzman AM, Messina S, De Sanctis R, et al. Assessing upper limb function in nonambulant SMA patients: development of a new module. Neuromuscul Disord. 2011;21(6):406–12. 10.1016/j.nmd.2011.02.014
    1. Steffensen B, Hyde S, Lyager S, Mattsson E. Validity of the EK scale: a functional assessment of non-ambulatory individuals with Duchenne muscular dystrophy or spinal muscular atrophy. Physiother Res Int. 2001;6(3):119–34.
    1. Iannaccone ST, Hynan LS, Morton A, Buchanan R, Limbers CA, Varni JW. The PedsQL in pediatric patients with Spinal Muscular Atrophy: feasibility, reliability, and validity of the Pediatric Quality of Life Inventory Generic Core Scales and Neuromuscular Module. Neuromuscul Disord. 2009;19(12):805–12. 10.1016/j.nmd.2009.09.009
    1. Vuillerot C, Payan C, Iwaz J, Ecochard R, Berard C. Responsiveness of the motor function measure in patients with spinal muscular atrophy. Arch Phys Med Rehabil. 2013;94(8):1555–61. 10.1016/j.apmr.2013.01.014
    1. Andrich D. Rating scales and Rasch measurement. Expert Rev Pharmacoecon Outcomes Res. 2011;11(5):571–85. 10.1586/erp.11.59
    1. Cano SJ, Mayhew A, Glanzman AM, Krosschell KJ, Swoboda KJ, Main M, et al. Rasch analysis of clinical outcome measures in spinal muscular atrophy. Muscle Nerve. 2014;49(3):422–30. 10.1002/mus.23937
    1. Sleigh JN, Grice SJ, Davies KE, Talbot K. Spinal muscular atrophy at the crossroads of basic science and therapy. Neuromuscul Disord. 2013;23(1):96 10.1016/j.nmd.2012.08.008
    1. Merlini L, Bertini E, Minetti C, Mongini T, Morandi L, Angelini C, et al. Motor function-muscle strength relationship in spinal muscular atrophy. Muscle Nerve. 2004;29(4):548–52.
    1. Merlini L, Mazzone ES, Solari A, Morandi L. Reliability of hand-held dynamometry in spinal muscular atrophy. Muscle Nerve. 2002;26(1):64–70.
    1. Russman BS, Iannaccone ST, Cook JD, Buncher RR, Samaha F, Perkins B, et al. Sensitivity of the DCN-SMA Study Group methodology. Dallas-Cincinnati-Newington Spinal Muscular Atrophy (DCN-SMA) Study Group. Muscle Nerve. 1990;13 Suppl:S13–5.
    1. Servais L, Deconinck N, Moraux A, Benali M, Canal A, Van Parys F, et al. Innovative methods to assess upper limb strength and function in non-ambulant Duchenne patients. Neuromuscul Disord. 2013;23(2):139–48. 10.1016/j.nmd.2012.10.022
    1. Brooke MH, Griggs RC, Mendell JR, Fenichel GM, Shumate JB, Pellegrino RJ. Clinical trial in Duchenne dystrophy. I. The design of the protocol. Muscle Nerve. 1981;4(3):186–97.
    1. Chow S-C, Shao J, Wang H. Sample size calculations in clinical research Boca Raton: Chapman & Hall/CRC; 2008.
    1. Allenbach Y, Benveniste O, Decostre V, Canal A, Eymard B, Herson S, et al. Quadriceps strength is a sensitive marker of disease progression in sporadic inclusion body myositis. Neuromuscul Disord. 2012;22(11):980–6. 10.1016/j.nmd.2012.05.004
    1. Seferian AM, Moraux A, Annoussamy M, Canal A, Decostre V, Diebate O, et al. Upper Limb Strength and Function Changes during a One-Year Follow-Up in Non-Ambulant Patients with Duchenne Muscular Dystrophy: An Observational Multicenter Trial. PLoS One. 2015;10(2):e0113999 10.1371/journal.pone.0113999
    1. Werlauff U, Vissing J, Steffensen BF. Change in muscle strength over time in spinal muscular atrophy types II and III. A long-term follow-up study. Neuromuscul Disord. 2012;22(12):1069–74. 10.1016/j.nmd.2012.06.352
    1. Carter GT, Abresch RT, Fowler WM Jr, Johnson ER, Kilmer DD, McDonald CM. Profiles of neuromuscular diseases. Spinal muscular atrophy. Am J Phys Med Rehabil. 1995;74(5 Suppl):S150–9.
    1. Ioos C, Leclair-Richard D, Mrad S, Barois A, Estournet-Mathiaud B. Respiratory capacity course in patients with infantile spinal muscular atrophy. Chest. 2004;126(3):831–7.
    1. Steffensen BF, Lyager S, Werge B, Rahbek J, Mattsson E. Physical capacity in non-ambulatory people with Duchenne muscular dystrophy or spinal muscular atrophy: a longitudinal study. Dev Med Child Neurol. 2002;44(9):623–32.
    1. Kaufmann P, McDermott MP, Darras BT, Finkel R, Kang P, Oskoui M, et al. Observational study of spinal muscular atrophy type 2 and 3: functional outcomes over 1 year. Arch Neurol. 2011;68(6):779–86. 10.1001/archneurol.2010.373
    1. Swoboda KJ, Prior TW, Scott CB, McNaught TP, Wride MC, Reyna SP, et al. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann Neurol. 2005;57(5):704–12.
    1. Febrer A, Rodriguez N, Alias L, Tizzano E. Measurement of muscle strength with a handheld dynamometer in patients with chronic spinal muscular atrophy. J Rehabil Med. 2010;42(3):228–31. 10.2340/16501977-0507
    1. McDonald CM, Henricson EK, Abresch RT, Florence JM, Eagle M, Gappmaier E, et al. The 6-minute walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study. Muscle Nerve. 2013;48(3):343–56. 10.1002/mus.23902

Source: PubMed

3
Sottoscrivi