The Use of Omic Technologies Applied to Traditional Chinese Medicine Research

Dalinda Isabel Sánchez-Vidaña, Rahim Rajwani, Man-Sau Wong, Dalinda Isabel Sánchez-Vidaña, Rahim Rajwani, Man-Sau Wong

Abstract

Natural products represent one of the most important reservoirs of structural and chemical diversity for the generation of leads in the drug development process. A growing number of researchers have shown interest in the development of drugs based on Chinese herbs. In this review, the use and potential of omic technologies as powerful tools in the modernization of traditional Chinese medicine are discussed. The analytical combination from each omic approach is crucial for understanding the working mechanisms of cells, tissues, organs, and organisms as well as the mechanisms of disease. Gradually, omic approaches have been introduced in every stage of the drug development process to generate high-quality Chinese medicine-based drugs. Finally, the future picture of the use of omic technologies is a promising tool and arena for further improvement in the modernization of traditional Chinese medicine.

Conflict of interest statement

Hereby, the authors declare that there is no conflict of interests regarding the publication of the present review paper.

Figures

Figure 1
Figure 1
Application of omic technologies to tackle the main challenges in TCM research.
Figure 2
Figure 2
Omic approaches and their area of study in systems biology.

References

    1. Harvey A. L., Edrada-Ebel R., Quinn R. J. The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery. 2015;14(2):111–129. doi: 10.1038/nrd4510.
    1. Patwardhan B., Warude D., Pushpangadan P., Bhatt N. Ayurveda and traditional Chinese medicine: a comparative overview. Evidence-Based Complementary and Alternative Medicine. 2005;2(4):465–473. doi: 10.1093/ecam/neh140.
    1. Newman D. J., Cragg G. M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products. 2012;75(3):311–335. doi: 10.1021/np200906s.
    1. Newman D. J., Cragg G. M. Natural products as sources of new drugs over the last 25 years. Journal of Natural Products. 2007;70(3):461–477. doi: 10.1021/np068054v.
    1. Fan T.-P., Deal G., Koo H.-L., et al. Future development of global regulations of Chinese herbal products. Journal of Ethnopharmacology. 2012;140(3):568–586. doi: 10.1016/j.jep.2012.02.029.
    1. Yuan R., Lin Y. Traditional Chinese medicine: an approach to scientific proof and clinical validation. Pharmacology and Therapeutics. 2000;86(2):191–198. doi: 10.1016/s0163-7258(00)00039-5.
    1. WHO. WHO Traditional Medicine Strategy 2014–2023. Genève, Switzerland: World Health Organization; 2013.
    1. Jiang W.-Y. Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science. Trends in Pharmacological Sciences. 2005;26(11):558–563. doi: 10.1016/j.tips.2005.09.006.
    1. Olson M. V. The human genome project: a player's perspective. Journal of Molecular Biology. 2002;319(4):931–942. doi: 10.1016/s0022-2836(02)00333-9.
    1. Chanda S. K., Caldwell J. S. Fulfilling the promise: drug discovery in the post-genomic era. Drug Discovery Today. 2003;8(4):168–174. doi: 10.1016/s1359-6446(02)02595-3.
    1. Collins F. S., Green E. D., Guttmacher A. E., Guyer M. S. A vision for the future of genomics research. Nature. 2003;422(6934):835–847. doi: 10.1038/nature01626.
    1. Pelkonen O., Pasanen M., Lindon J. C., et al. Omics and its potential impact on R&D and regulation of complex herbal products. Journal of Ethnopharmacology. 2012;140(3):587–593. doi: 10.1016/j.jep.2012.01.035.
    1. Reiss T. Drug discovery of the future: the implications of the human genome project. Trends in Biotechnology. 2001;19(12):496–499. doi: 10.1016/s0167-7799(01)01811-x.
    1. Yan S.-K., Liu R.-H., Jin H.-Z., et al. ‘Omics’ in pharmaceutical research: overview, applications, challenges, and future perspectives. Chinese Journal of Natural Medicines. 2015;13(1):3–21. doi: 10.1016/s1875-5364(15)60002-4.
    1. Wang X., Zhang A., Sun H., Wang P. Systems biology technologies enable personalized traditional chinese medicine: a systematic review. American Journal of Chinese Medicine. 2012;40(6):1109–1122. doi: 10.1142/s0192415x12500826.
    1. Buriani A., Garcia-Bermejo M. L., Bosisio E., et al. Omic techniques in systems biology approaches to traditional Chinese medicine research: present and future. Journal of Ethnopharmacology. 2012;140(3):535–544. doi: 10.1016/j.jep.2012.01.055.
    1. Su Z.-Y., Shu L., Lee J. H., et al. Perspective on Nrf2, epigenomics and cancer stem cells in cancer chemoprevention using dietary phytochemicals and traditional Chinese medicines. Progress in Chemistry. 2013;25(9):1526–1543.
    1. Li H., Zhou M., Zhao A., Jia W. Traditional Chinese medicine: balancing the gut ecosystem. Phytotherapy Research. 2009;23(9):1332–1335. doi: 10.1002/ptr.2590.
    1. Gao C., Weisman D., Lan J., Gou N., Gu A. Z. Toxicity mechanisms identification via gene set enrichment analysis of time-series toxicogenomics data: impact of time and concentration. Environmental Science and Technology. 2015;49(7):4618–4626. doi: 10.1021/es505199f.
    1. Waters M. D., Fostel J. M. Toxicogenomics and systems toxicology: aims and prospects. Nature Reviews Genetics. 2004;5(12):936–948. doi: 10.1038/nrg1493.
    1. Daly A. K. Pharmacogenomics of adverse drug reactions. Genome Medicine. 2013;5, article 5 doi: 10.1186/gm409.
    1. Shahabi P., Dubé M.-P. Cardiovascular pharmacogenomics; state of current knowledge and implementation in practice. International Journal of Cardiology. 2015;184(1):772–795. doi: 10.1016/j.ijcard.2015.02.025.
    1. Kang Y. J. Herbogenomics: from traditional Chinese medicine to novel therapeutics. Experimental Biology and Medicine. 2008;233(9):1059–1065. doi: 10.3181/0802-mr-47.
    1. Denzler K. L., Waters R., Jacobs B. L., Rochon Y., Langland J. O. Regulation of inflammatory gene expression in PBMCs by immunostimulatory botanicals. PloS one. 2010;5(9)e12561
    1. Twyman R. M. Principles of Proteomics. 2nd. Boca Raton, Fla, USA: Garland Science, New York, NY, USA; Taylor Francis Group LLC; 2014.
    1. Cutler P., Voshol H. Proteomics in pharmaceutical research and development. Proteomics—Clinical Applications. 2015;9(7-8):643–650. doi: 10.1002/prca.201400181.
    1. Cristea I. M., Gaskell S. J., Whetton A. D. Proteomics techniques and their application to hematology. Blood. 2004;103(10):3624–3634. doi: 10.1182/blood-2003-09-3295.
    1. Li P., Yang L.-P., Gong Y.-W. Application of systems biology technology in research of traditional Chinese medicine. Journal of Traditional Chinese Medicine. 2009;29(2):153–157. doi: 10.1016/S0254-6272(09)60054-6.
    1. Pagel O., Loroch S., Sickmann A., Zahedi R. P. Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Review of Proteomics. 2015;12(3):235–253. doi: 10.1586/14789450.2015.1042867.
    1. Van Breemen R. B., Fong H. H. S., Farnsworth N. R. Ensuring the safety of botanical dietary supplements. American Journal of Clinical Nutrition. 2008;87(2):509S–5013S.
    1. Bantscheff M., Drewes G. Chemoproteomic approaches to drug target identification and drug profiling. Bioorganic and Medicinal Chemistry. 2012;20(6):1973–1978. doi: 10.1016/j.bmc.2011.11.003.
    1. Bulman A., Neagu M., Constantin C. Immunomics in skin cancer—improvement in diagnosis, prognosis and therapy monitoring. Current Proteomics. 2013;10(3):202–217. doi: 10.2174/1570164611310030003.
    1. Ma H.-D., Deng Y.-R., Tian Z., Lian Z.-X. Traditional Chinese medicine and immune regulation. Clinical Reviews in Allergy and Immunology. 2013;44(3):229–241. doi: 10.1007/s12016-012-8332-0.
    1. Ohashi H., Hasegawa M., Wakimoto K., Miyamoto-Sato E. Next-generation technologies for multiomics approaches including interactome sequencing. BioMed Research International. 2015;2015:9. doi: 10.1155/2015/104209.104209
    1. Ulrich-Merzenich G., Zeitler H., Jobst D., Panek D., Vetter H., Wagner H. Application of the “-Omic-” technologies in phytomedicine. Phytomedicine. 2007;14(1):70–82. doi: 10.1016/j.phymed.2006.11.011.
    1. Kaddurah-Daouk R., Weinshilboum R. M. Pharmacometabolomics: implications for clinical pharmacology and systems pharmacology. Clinical Pharmacology and Therapeutics. 2014;95(2):154–167. doi: 10.1038/clpt.2013.217.
    1. Bouhifd M., Hartung T., Hogberg H. T., Kleensang A., Zhao L. Review: toxicometabolomics. Journal of Applied Toxicology. 2013;33(12):1365–1383. doi: 10.1002/jat.2874.
    1. Zhang X., Wu H., Liao P., Li X., Ni J., Pei F. NMR-based metabonomic study on the subacute toxicity of aristolochic acid in rats. Food and Chemical Toxicology. 2006;44(7):1006–1014. doi: 10.1016/j.fct.2005.12.004.
    1. Ni Y., Su M., Qiu Y., et al. Metabolic profiling using combined GC-MS and LC-MS provides a systems understanding of aristolochic acid-induced nephrotoxicity in rat. FEBS Letters. 2007;581(4):707–711. doi: 10.1016/j.febslet.2007.01.036.
    1. Chan W., Lee K.-C., Liu N., Wong R. N. S., Liu H., Cai Z. Liquid chromatography/mass spectrometry for metabonomics investigation of the biochemical effects induced by aristolochic acid in rats: the use of information-dependent acquisition for biomarker identification. Rapid Communications in Mass Spectrometry. 2008;22(6):873–880. doi: 10.1002/rcm.3438.
    1. Liu X., Xiao Y., Gao H.-C., Ren J., Lin D.-H. Metabonomic study of aristolochic acid I-induced acute renal toxicity urine at female and male C57BL/6J Mice based on H-1 NMR. Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities. 2010;31(5):927–932.
    1. Guo P., Wang J., Dong G., et al. NMR-based metabolomics approach to study the chronic toxicity of crude ricin from castor bean kernels on rats. Molecular BioSystems. 2014;10(9):2426–2440. doi: 10.1039/c4mb00251b.
    1. Aa J., Shao F., Wang G., et al. Gas chromatography time-of-flight mass spectrometry based metabolomic approach to evaluating toxicity of triptolide. Metabolomics. 2011;7(2):217–225. doi: 10.1007/s11306-010-0241-8.
    1. Teo C. C., Chong W. P. K., Tan E., Basri N. B., Low Z. J., Ho Y. S. Advances in sample preparation and analytical techniques for lipidomics study of clinical samples. TrAC—Trends in Analytical Chemistry. 2015;66:1–18. doi: 10.1016/j.trac.2014.10.010.
    1. Astarita G., Ollero M. Lipidomics: an evolving discipline in molecular sciences. International Journal of Molecular Sciences. 2015;16(4):7748–7752. doi: 10.3390/ijms16047748.
    1. Del Castillo M. D., Martinez-Saez N., Amigo-Benavent M., Silvan J. M. Phytochemomics and other omics for permitting health claims made on foods. Food Research International. 2013;54(1):1237–1249. doi: 10.1016/j.foodres.2013.05.014.
    1. Wang X., Zhang A., Sun H. Future perspectives of Chinese medical formulae: chinmedomics as an effector. OMICS A Journal of Integrative Biology. 2012;16(7-8):414–421. doi: 10.1089/omi.2011.0138.
    1. Zhang A.-H., Sun H., Yan G.-L., Wang P., Han Y., Wang X.-J. Chinmedomics: a new strategy for research of traditional Chinese medicine. Zhongguo Zhong Yao Za Zhi. 2015;40(4):569–576.
    1. Wang X., Zhang A., Sun H., editors. Chinmedomics: The Integration of Serum Pharmacochemistry and Metabolomics to Elucidate the Scientific Value of Traditional Chinese Medicine. 1st. Mica Haley; 2015.
    1. Ogra Y. Development of metallomics research on environmental toxicology. Yakugaku Zasshi journal of the Pharmaceutical Society of Japan. 2015;135(2):307–314. doi: 10.1248/yakushi.14-00233.
    1. Baxter I. Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits? Journal of Experimental Botany. 2015;66(8):2127–2131. doi: 10.1093/jxb/erv040.
    1. Salt D. E., Baxter I., Lahner B. Ionomics and the study of the plant ionome. Annual Review of Plant Biology. 2008;59:709–733. doi: 10.1146/annurev.arplant.59.032607.092942.
    1. Wu D., Shen Q., Cai S., Chen Z.-H., Dai F., Zhang G. Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant and Cell Physiology. 2013;54(12):1976–1988. doi: 10.1093/pcp/pct134.
    1. Hoehndorf R., Schofield P. N., Gkoutos G. V. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases. Scientific Reports. 2015;5 doi: 10.1038/srep10888.10888
    1. Monte A. A., Brocker C., Nebert D. W., Gonzalez F. J., Thompson D. C., Vasiliou V. Improved drug therapy: triangulating phenomics with genomics and metabolomics. Human Genomics. 2014;8, article 16 doi: 10.1186/s40246-014-0016-9.
    1. Valet G. Cytomics: an entry to biomedical cell systems biology. Cytometry Part A. 2005;63(2):67–68. doi: 10.1002/cyto.a.20110.
    1. Lee H. Genetically engineered mouse models for drug development and preclinical trials. Biomolecules and Therapeutics. 2014;22(4):267–274. doi: 10.4062/biomolther.2014.074.
    1. Baba Y. Development of novel biomedicine based on genome science. European Journal of Pharmaceutical Sciences. 2001;13(1):3–4. doi: 10.1016/S0928-0987(00)00201-3.
    1. van Ommen G.-J. B. The Human Genome Project and the future of diagnostics, treatment and prevention. Journal of Inherited Metabolic Disease. 2002;25(3):183–188. doi: 10.1023/A:1015673727498.
    1. Wang J.-F., Wei D.-Q. Role of structural bioinformatics and traditional Chinese medicine databases in pharmacogenomics. Pharmacogenomics. 2009;10(8):1213–1215. doi: 10.2217/pgs.09.81.
    1. Cho W. C.-S. Application of proteomics in Chinese medicine research. American Journal of Chinese Medicine. 2007;35(6):911–922. doi: 10.1142/S0192415X07005375.
    1. Carnielli C. M., Winck F. V., Leme A. F. P. Functional annotation and biological interpretation of proteomics data. Biochimica et Biophysica Acta—Proteins and Proteomics. 2015;1854(1):46–54. doi: 10.1016/j.bbapap.2014.10.019.
    1. Li Q.-R., Ning Z.-B., Yang X.-L., Wu J.-R., Zeng R. Complementary workflow for global phosphoproteome analysis. Electrophoresis. 2012;33(22):3291–3298. doi: 10.1002/elps.201200124.
    1. Cieśla J., Fraczyk T., Rode W. Phosphorylation of basic amino acid residues in proteins: important but easily missed. Acta Biochimica Polonica. 2011;58(2):137–148.
    1. Taylor A., Day M. P., Hill S., Marshall J. Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages. Journal of Analytical Atomic Spectrometry. 2014;29(3):386–426. doi: 10.1039/c4ja90001d.
    1. Djingova R., Mihaylova V., Lyubomirova V., Tsalev D. L. Multielement analytical spectroscopy in plant ionomics research. Applied Spectroscopy Reviews. 2013;48(5):384–424. doi: 10.1080/05704928.2012.703153.
    1. Kalyankar T. M., Wadher S. J., Dange S. S., Attar M. S., Pattewar A. M. Analysis of herbal drugs: a review. Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry. 2014;1, article 12
    1. Qu Z., Cui J., Harata-Lee Y., et al. Identification of candidate anti-cancer molecular mechanisms of compound kushen injection using functional genomics. Oncotarget. 2016 doi: 10.18632/oncotarget.11788.
    1. Cheng H.-M., Li C.-C., Chen C. Y.-C., et al. Application of bioactivity database of Chinese herbal medicine on the therapeutic prediction, drug development, and safety evaluation. Journal of Ethnopharmacology. 2010;132(2):429–437. doi: 10.1016/j.jep.2010.08.022.
    1. Gu Y., Zhang Y., Shi X., et al. Effect of traditional Chinese medicine berberine on type 2 diabetes based on comprehensive metabonomics. Talanta. 2010;81(3):766–772. doi: 10.1016/j.talanta.2010.01.015.
    1. Miao H., Zhao Y.-H., Vaziri N. D., et al. Lipidomics biomarkers of diet-induced hyperlipidemia and its treatment with poria cocos. Journal of Agricultural and Food Chemistry. 2016;64(4):969–979. doi: 10.1021/acs.jafc.5b05350.
    1. Amigo-Benavent M., Clemente A., Caira S., Stiuso P., Ferranti P., Del Castillo M. D. Use of phytochemomics to evaluate the bioavailability and bioactivity of antioxidant peptides of soybean β-conglycinin. Electrophoresis. 2014;35(11):1582–1589. doi: 10.1002/elps.201300527.
    1. Wang X., Lv H., Sun H., et al. Metabolic urinary profiling of alcohol hepatotoxicity and intervention effects of Yin Chen Hao Tang in rats using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 2008;48(4):1161–1168. doi: 10.1016/j.jpba.2008.07.028.
    1. Li X.-Z., Zhang S.-N., Wang K.-X., Liu S.-M., Lu F. ITRAQ-based quantitative proteomics study on the neuroprotective effects of extract of Acanthopanax senticosus harm on SH-SY5Y cells overexpressing A53T mutant α-synuclein. Neurochemistry International. 2014;72(1):37–47. doi: 10.1016/j.neuint.2014.04.012.
    1. Cui Y., Rong C., Wang J., et al. Mechanism-based anti-anxiety effects of polysaccharides extracted from Shudihuang (radix rehmanniae Preparata) by two-dimensional electrophoresis analysis in rat hippocampus proteins. Journal of Traditional Chinese Medicine. 2013;33(4):524–530. doi: 10.1016/s0254-6272(13)60159-4.
    1. Qi H.-Y., Li L., Yu J., et al. Proteomic identification of Nrf2-mediated phase II enzymes critical for protection of Tao Hong Si Wu decoction against oxygen glucose deprivation injury in PC12 cells. Evidence-based Complementary and Alternative Medicine. 2014;2014:11. doi: 10.1155/2014/945814.945814
    1. Zhao Y.-Y., Li H.-T., Feng Y.-L., Bai X., Lin R.-C. Urinary metabonomic study of the surface layer of Poria cocos as an effective treatment for chronic renal injury in rats. Journal of Ethnopharmacology. 2013;148(2):403–410. doi: 10.1016/j.jep.2013.04.018.
    1. Dong G., Wei D., Wang J., et al. Study of the cardiotoxicity of venenum bufonis in rats using an 1H NMR-based metabolomics approach. PLoS ONE. 2015;10(3) doi: 10.1371/journal.pone.0119515.e0119515
    1. Yan B., Deng Y., Hou J., et al. UHPLC-LTQ-Orbitrap MS combined with spike-in method for plasma metabonomics analysis of acute myocardial ischemia rats and pretreatment effect of Danqi Tongmai tablet. Molecular BioSystems. 2015;11(2):486–496. doi: 10.1039/c4mb00529e.
    1. Liu Y.-T., Peng J.-B., Jia H.-M., et al. UPLC-Q/TOF MS standardized Chinese formula Xin-Ke-Shu for the treatment of atherosclerosis in a rabbit model. Phytomedicine. 2014;21(11):1364–1372. doi: 10.1016/j.phymed.2014.05.009.
    1. Liu Y.-T., Peng J.-B., Jia H.-M., Zhang H.-W., Ding G., Zou Z.-M. Urinary metabonomic evaluation of the therapeutic effect of traditional Chinese medicine Xin-Ke-Shu against atherosclerosis rabbits using UPLC-Q/TOF MS. Chemometrics and Intelligent Laboratory Systems. 2014;136:104–114. doi: 10.1016/j.chemolab.2014.05.011.
    1. Li W., Tang Y., Guo J., et al. Comparative metabolomics analysis on hematopoietic functions of herb pair Gui-Xiong by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry and pattern recognition approach. Journal of Chromatography A. 2014;1346:49–56. doi: 10.1016/j.chroma.2014.04.042.
    1. Zhang H., Fu P., Ke B., et al. Metabolomic analysis of biochemical changes in the plasma and urine of collagen-induced arthritis in rats after treatment with Huang-Lian-Jie-Du-Tang. Journal of Ethnopharmacology. 2014;154(1):55–64. doi: 10.1016/j.jep.2014.03.007.
    1. Ding X., Hu J., Wen C., Ding Z., Yao L., Fan Y. Rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry-based metabolomics approach to study the effects of jieduquyuziyin prescription on systemic lupus erythematosus. PLoS ONE. 2014;9(2) doi: 10.1371/journal.pone.0088223.e88223
    1. Lin L.-L., Hsia C.-R., Hsu C.-L., Huang H.-C., Juan H.-F. Integrating transcriptomics and proteomics to show that tanshinone IIA suppresses cell growth by blocking glucose metabolism in gastric cancer cells. BMC Genomics. 2015;16, article 41 doi: 10.1186/s12864-015-1230-0.
    1. Kadioglu O., Kermani N. S., Kelter G., et al. Pharmacogenomics of cantharidin in tumor cells. Biochemical Pharmacology. 2014;87(3):399–409. doi: 10.1016/j.bcp.2013.10.025.
    1. Sertel S., Eichhorn T., Simon C. H., Plinkert P. K., Johnson S. W., Efferth T. Pharmacogenomic identification of c-Myc/Max-regulated genes associated with cytotoxicity of artesunate towards human colon, ovarian and lung cancer cell lines. Molecules. 2010;15(4):2886–2910. doi: 10.3390/molecules15042886.
    1. Wang H.-W., Liou K.-T., Wang Y.-H., et al. Deciphering the neuroprotective mechanisms of Bu-yang Huan-wu decoction by an integrative neurofunctional and genomic approach in ischemic stroke mice. Journal of Ethnopharmacology. 2011;138(1):22–33. doi: 10.1016/j.jep.2011.06.033.
    1. Liu M., Fan J., Wang S., et al. Transcriptional profiling of Chinese medicinal formula Si-Wu-Tang on breast cancer cells reveals phytoestrogenic activity. BMC Complementary and Alternative Medicine. 2013;13, article 11 doi: 10.1186/1472-6882-13-11.
    1. Hu Y., Chen X., Lin H., Hu Y., Mu X. Study on the antiendotoxin action of Pulsatillae Decoction using an Affymetrix rat genome array. Cellular Immunology. 2009;257(1-2):32–37. doi: 10.1016/j.cellimm.2009.02.003.
    1. Bei W. J., Guo J., Wu H. Y., Cao Y. Lipid-regulating effect of traditional chinese medicine: mechanisms of actions. Evidence-Based Complementary and Alternative Medicine. 2012;2012:10. doi: 10.1155/2012/970635.970635
    1. Yue P. Y. K., Mak N. K., Cheng Y. K., et al. Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides. Chinese Medicine. 2007;2, article 6 doi: 10.1186/1749-8546-2-6.
    1. Li S. P., Zhao J., Yang B. Strategies for quality control of Chinese medicines. Journal of Pharmaceutical and Biomedical Analysis. 2011;55(4):802–809. doi: 10.1016/j.jpba.2010.12.011.
    1. Jordan S. A., Cunningham D. G., Marles R. J. Assessment of herbal medicinal products: challenges, and opportunities to increase the knowledge base for safety assessment. Toxicology and Applied Pharmacology. 2010;243(2):198–216. doi: 10.1016/j.taap.2009.12.005.
    1. Sahoo N., Manchikanti P., Dey S. Herbal drugs: standards and regulation. Fitoterapia. 2010;81(6):462–471. doi: 10.1016/j.fitote.2010.02.001.
    1. Claeson P. Requirements on efficacy of herbal medicinal products. Journal of Ethnopharmacology. 2014;158:463–466. doi: 10.1016/j.jep.2014.07.017.
    1. Jiang Y., David B., Tu P., Barbin Y. Recent analytical approaches in quality control of traditional Chinese medicines—a review. Analytica Chimica Acta. 2010;657(1):9–18. doi: 10.1016/j.aca.2009.10.024.
    1. Kroes B. H. The legal framework governing the quality of (traditional) herbal medicinal products in the European Union. Journal of Ethnopharmacology. 2014;158:449–453. doi: 10.1016/j.jep.2014.07.044.
    1. Van Der Kooy F., Maltese F., Young H. C., Hye K. K., Verpoorte R. Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. Planta Medica. 2009;75(7):763–775. doi: 10.1055/s-0029-1185450.
    1. Liu Y., Liu J., Yin P., Gao M., Deng C., Zhang X. High throughput identification of components from traditional Chinese medicine herbs by utilizing graphene or graphene oxide as MALDI-TOF-MS matrix. Journal of mass spectrometry : JMS. 2011;46(8):804–815. doi: 10.1002/jms.1952.
    1. Steinmann D., Ganzera M. Recent advances on HPLC/MS in medicinal plant analysis. Journal of Pharmaceutical and Biomedical Analysis. 2011;55(4):744–757. doi: 10.1016/j.jpba.2010.11.015.
    1. Song X.-Y., Li Y.-D., Shi Y.-P., Jin L., Chen J. Quality control of traditional Chinese medicines: a review. Chinese Journal of Natural Medicines. 2013;11(6):596–607. doi: 10.1016/s1875-5364(13)60069-2.
    1. Chen S., Song J., Sun C., et al. Herbal genomics: examining the biology of traditional medicines. Science. 2015;347(6219):S27–S29. doi: 10.1126/science.aaa3600.
    1. Jiang M., Jiao Y., Wang Y., et al. Quantitative profiling of polar metabolites in herbal medicine injections for multivariate statistical evaluation based on independence principal component analysis. PLoS ONE. 2014;9(8) doi: 10.1371/journal.pone.0105412.e105412
    1. Chan P. H., Zhang W. L., Cheung C. Y., Tsim K. W. K., Lam H. Quality control of Danggui Buxue Tang, a traditional Chinese medicine decoction, by 1H-NMR metabolic profiling. Evidence-based Complementary and Alternative Medicine. 2014;2014:8. doi: 10.1155/2014/567893.567893
    1. Wang Y., He S., Cheng X., Lu Y., Zou Y., Zhang Q. UPLC–Q-TOF-MS/MS fingerprinting of Traditional Chinese Formula SiJunZiTangnZiTang. Journal of Pharmaceutical and Biomedical Analysis. 2013;80:24–33. doi: 10.1016/j.jpba.2013.02.021.
    1. Firenzuoli F., Gori L. Herbal medicine today: clinical and research issues. Evidence-Based Complementary and Alternative Medicine. 2007;4(S1):37–40. doi: 10.1093/ecam/nem096.
    1. Wang J., van der Heijden R., Spruit S., et al. Quality and safety of Chinese herbal medicines guided by a systems biology perspective. Journal of Ethnopharmacology. 2009;126(1):31–41. doi: 10.1016/j.jep.2009.07.040.
    1. Song Y.-N., Zhang G.-B., Zhang Y.-Y., Su S.-B. Clinical applications of omics technologies on Zheng differentiation research in traditional Chinese medicine. Evidence-based Complementary and Alternative Medicine. 2013;2013:11. doi: 10.1155/2013/989618.989618
    1. Bottcher T., Pitscheider M., Sieber S. A. Natural products and their biological targets: proteomic and metabolomic labeling strategies. Angew Chemie. 2010;49(15):2680–2698. doi: 10.1002/anie.200905352.
    1. Camerini S., Mauri P. The role of protein and peptide separation before mass spectrometry analysis in clinical proteomics. Journal of Chromatography A. 2015;1381:1–12. doi: 10.1016/j.chroma.2014.12.035.
    1. Cheng K.-W., Wong C.-C., Wang M., He Q.-Y., Chen F. Identification and characterization of molecular targets of natural products by mass spectrometry. Mass Spectrometry Reviews. 2010;29(1):126–155. doi: 10.1002/mas.20235.
    1. Huang J., Wang F., Ye M., Zou H. Enrichment and separation techniques for large-scale proteomics analysis of the protein post-translational modifications. Journal of Chromatography A. 2014;1372:1–17. doi: 10.1016/j.chroma.2014.10.107.
    1. Beltran L., Cutillas P. R. Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids. 2012;43(3):1009–1024. doi: 10.1007/s00726-012-1288-9.
    1. Jaros J. A. J., Guest P. C., Ramoune H., et al. Clinical use of phosphorylated proteins in blood serum analysed by immobilised metal ion affinity chromatography and mass spectrometry. Journal of Proteomics. 2012;76:36–42. doi: 10.1016/j.jprot.2012.02.015.
    1. Shyur L.-F., Yang N.-S. Metabolomics for phytomedicine research and drug development. Current Opinion in Chemical Biology. 2008;12(1):66–71. doi: 10.1016/j.cbpa.2008.01.032.
    1. Wang J., Peng X., Peng W., Wu F.-X. Dynamic protein interaction network construction and applications. Proteomics. 2014;14(4-5):338–352. doi: 10.1002/pmic.201300257.
    1. Zhao Y.-Y., Lin R.-C. UPLC-MSE application in disease biomarker discovery: the discoveries in proteomics to metabolomics. Chemico-Biological Interactions. 2014;215:7–16. doi: 10.1016/j.cbi.2014.02.014.
    1. Zhao Y.-Y., Feng Y.-L., Bai X., Tan X.-J., Lin R.-C., Mei Q. Ultra performance liquid chromatography-based metabonomic study of therapeutic effect of the surface layer of poria cocos on adenine-induced chronic kidney disease provides new insight into anti-fibrosis mechanism. PLoS ONE. 2013;8(3) doi: 10.1371/journal.pone.0059617.e59617
    1. Zhao Y.-Y., Chen H., Tian T., et al. A pharmaco-metabonomic study on chronic kidney disease and therapeutic effect of Ergone by UPLC-QTOF/HDMS. PLOS ONE. 2014;9(12) doi: 10.1371/journal.pone.0115467.e115467
    1. Zhang Z.-H., Wei F., Vaziri N. D., et al. Metabolomics insights into chronic kidney disease and modulatory effect of rhubarb against tubulointerstitial fibrosis. Scientific Reports. 2015;5, article no. 14472 doi: 10.1038/srep14472.
    1. Tian J.-S., Peng G.-J., Wu Y.-F., et al. A GC-MS urinary quantitative metabolomics analysis in depressed patients treated with TCM formula of Xiaoyaosan. Journal of Chromatography B. 2016;1026:227–235. doi: 10.1016/j.jchromb.2015.12.026.
    1. Zhang A., Sun H., Wang X. Recent highlights of metabolomics for Traditional Chinese Medicine. Pharmazie. 2012;67(8):667–675. doi: 10.1691/ph.2012.2511.
    1. Li S.-S. The Proteomics: a new tool for Chinese medicine research. American Journal of Chinese Medicine. 2007;35(6):p. 923. doi: 10.1142/s0192415x07005387.
    1. Quan Y., Li B., Sun Y.-M., Zhang H.-Y. Elucidating pharmacological mechanisms of natural medicines by biclustering analysis of the gene expression profile: A Case Study On Curcumin and Si-Wu-Tang. International Journal of Molecular Sciences. 2015;16(1):510–520. doi: 10.3390/ijms16010510.
    1. Fang H. Y., Chen S. B., Guo D. J., Pan S. Y., Yu Z. L. Proteomic identification of differentially expressed proteins in curcumin-treated MCF-7 cells. Phytomedicine. 2011;18(8-9):697–703. doi: 10.1016/j.phymed.2010.11.012.
    1. Cai X. Z., Huang W. Y., Qiao Y., et al. Inhibitory effects of curcumin on gastric cancer cells: a proteomic study of molecular targets. Phytomedicine. 2013;20(6):495–505. doi: 10.1016/j.phymed.2012.12.007.
    1. Lao Y., Wang X., Xu N., Zhang H., Xu H. Application of proteomics to determine the mechanism of action of traditional Chinese medicine remedies. Journal of Ethnopharmacology. 2014;155(1):1–8. doi: 10.1016/j.jep.2014.05.022.
    1. Wei D.-F., Wei Y.-X., Cheng W.-D., et al. Proteomic analysis of the effect of triterpenes from Patrinia heterophylla on leukemia K562 cells. Journal of Ethnopharmacology. 2012;144(3):576–583. doi: 10.1016/j.jep.2012.09.043.
    1. Sun H., Zhang A., Yan G., et al. Proteomics study on the hepatoprotective effects of traditional Chinese medicine formulae Yin-Chen-Hao-Tang by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 2013;75:173–179. doi: 10.1016/j.jpba.2012.11.025.
    1. Lo H.-Y., Li C.-C., Huang H.-C., Lin L.-J., Hsiang C.-Y., Ho T.-Y. Application of transcriptomics in Chinese herbal medicine studies. Journal of Traditional and Complementary Medicine. 2012;2(2):105–114. doi: 10.1016/s2225-4110(16)30083-9.

Source: PubMed

3
Sottoscrivi