Plasma neutrophil gelatinase associated lipocalin (NGAL) is associated with kidney function in uraemic patients before and after kidney transplantation

Nils E Magnusson, Mads Hornum, Kaj Anker Jørgensen, Jesper Melchior Hansen, Claus Bistrup, Bo Feldt-Rasmussen, Allan Flyvbjerg, Nils E Magnusson, Mads Hornum, Kaj Anker Jørgensen, Jesper Melchior Hansen, Claus Bistrup, Bo Feldt-Rasmussen, Allan Flyvbjerg

Abstract

Background: Neutrophil gelatinase associated lipocalin (NGAL) is a biomarker of kidney injury. We examined plasma levels of NGAL in a cohort of 57 kidney allograft recipients (Tx group, 39 ± 13 years), a uraemic group of 40 patients remaining on the waiting list (47 ± 11 years) and a control group of 14 healthy subjects matched for age, sex and body mass index (BMI). The kidney graft recipients were studied at baseline before transplantation and 3 and 12 months after transplantation and the uraemic group at baseline and after 12 months.

Methods: NGAL was measured using a validated in-house Time-Resolved Immuno-flourometric assay (TRIFMA). Repeated measurements differed by < 10% and mean values were used for statistical analyses. Spearman rank order correlation analysis and the Kruskal-Wallis non-parametric test were used to evaluate the association of NGAL concentrations with clinical parameters.

Results: Plasma NGAL levels before transplantation in the Tx and uraemic groups were significantly higher than in the healthy controls (1,251 μg/L, 1,478 μg/L vs. 163 μg/L, p < 0.0001). In the Tx group NGAL concentrations were associated with serum creatinine (R = 0.51, p < 0.0001), duration of end-stage renal failure (R = 0.41, p = 0.002) and leukocyte count (R = 0.29, p < 0.026). At 3 and 12 months plasma NGAL concentrations declined to 223 μg/L and 243 μg/L, respectively and were associated with homocysteine (R = 0.39, p = 0.0051 and R = 0.47, p = 0.0007).

Conclusions: Plasma NGAL is a novel marker of kidney function, which correlates to duration of end-stage renal failure (ESRD) and serum creatinine in uraemic patients awaiting kidney transplantation. Plasma NGAL is associated with homocysteine in transplanted patients. The prognostic value of these findings requires further studies.

Figures

Figure 1
Figure 1
Relationship between serum creatinine and plasma NGAL levels in the kidney allograft recipients. Squares: before transplantation, circles: three months after transplantation, triangles: 12 months after transplantation. Insert: Three and 12 months after transplantation with expanded resolution.
Figure 2
Figure 2
Mean vs. absolute difference plot comparing the NGAL in-house assay with the commercial ELISA assay. Absolute differences were calculated as values obtained using the TRIFMA assay subtracted from values obtained using the ELISA assay. The 95% limits of agreement ( ± 1.96 SD) are ± 63 μg/L. SD is the standard deviation of the difference.
Figure 3
Figure 3
Scatter plot; TRIFMA assay NGAL levels vs. ELISA assay NGAL levels (linear regression: R = 0.96).

References

    1. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268(14):10425–10432.
    1. Patel RC, Lange D, McConathy WJ, Patel YC, Patel SC. Probing the structure of the ligand binding cavity of lipocalins by fluorescence spectroscopy. Protein Eng. 1997;10(6):621–625. doi: 10.1093/protein/10.6.621.
    1. Hvidberg V, Jacobsen C, Strong RK, Cowland JB, Moestrup SK, Borregaard N. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett. 2005;579(3):773–777. doi: 10.1016/j.febslet.2004.12.031.
    1. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The Neutrophil Lipocalin NGAL Is a Bacteriostatic Agent that Interferes with Siderophore-Mediated Iron Acquisition. Mol Cell. 2002;10(5):1033. doi: 10.1016/S1097-2765(02)00708-6. < last_page > 1043.
    1. Yang J, Mori K, Li JY, Barasch J. Iron, lipocalin, and kidney epithelia. Am J Physiol Renal Physiol. 2003;285(1):F9–18.
    1. Berger T, Togawa A, Duncan GS, Elia AJ, You-Ten A, Wakeham A, Fong HE, Cheung CC, Mak TW. Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci USA. 2006;103(6):1834–1839. doi: 10.1073/pnas.0510847103.
    1. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432(7019):917–921. doi: 10.1038/nature03104.
    1. Xu SY, Pauksen K, Venge P. Serum measurements of human neutrophil lipocalin (HNL) discriminate between acute bacterial and viral infections. Scand J Clin Lab Invest. 1995;55(2):125–131. doi: 10.3109/00365519509089604.
    1. Axelsson L, Bergenfeldt M, Ohlsson K. Studies of the release and turnover of a human neutrophil lipocalin. Scand J Clin Lab Invest. 1995;55(7):577–588. doi: 10.3109/00365519509110257.
    1. Seveus L, Amin K, Peterson CG, Roomans GM, Venge P. Human neutrophil lipocalin (HNL) is a specific granule constituent of the neutrophil granulocyte. Studies in bronchial and lung parenchymal tissue and peripheral blood cells. Histochem Cell Biol. 1997;107(5):423–432. doi: 10.1007/s004180050129.
    1. Sunil VR, Patel KJ, Nilsen-Hamilton M, Heck DE, Laskin JD, Laskin DL. Acute endotoxemia is associated with upregulation of lipocalin 24p3/Lcn2 in lung and liver. Exp Mol Pathol. 2007;83(2):177–187. doi: 10.1016/j.yexmp.2007.03.004.
    1. Liu M, Prisco M, Drakas R, Searles D, Baserga R. 24p3 in Differentiation of Myeloid Cells. J Cell Physiol. 2005;205(2):302–309. doi: 10.1002/jcp.20400.
    1. Garay-Rojas E, Harper M, Hraba-Renevey S, Kress M. An apparent autocrine mechanism amplifies the dexamethasone- and retinoic acid-induced expression of mouse lipocalin-encoding gene 24p3. Gene. 1996;170(2):173–180. doi: 10.1016/0378-1119(95)00896-9.
    1. Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T, Borregaard N. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol. 2003;170(11):5583–5589.
    1. Jayaraman A, Roberts KA, Yoon J, Yarmush DM, Duan X, Lee K, Yarmush ML. Identification of neutrophil gelatinase-associated lipocalin (NGAL) as a discriminatory marker of the hepatocyte-secreted protein response to IL-1beta: a proteomic analysis. Biotechnol Bioeng. 2005;91(4):502–515. doi: 10.1002/bit.20535.
    1. Cowland JB, Sorensen OE, Sehested M, Borregaard N. Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1 beta, but not by TNF-alpha. J Immunol. 2003;171(12):6630–6639.
    1. Pawluczyk IZ, Furness PN, Harris KP. Macrophage-induced rat mesangial cell expression of the 24p3-like protein alpha-2-microglobulin-related protein. Biochim Biophys Acta. 2003;1645(2):218–227.
    1. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D'Agati V, Devarajan P, Barasch J. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest. 2005;115(3):610–621.
    1. Bu DX, Hemdahl AL, Gabrielsen A, Fuxe J, Zhu C, Eriksson P, Yan ZQ. Induction of neutrophil gelatinase-associated lipocalin in vascular injury via activation of nuclear factor-kappaB. Am J Pathol. 2006;169(6):2245–2253. doi: 10.2353/ajpath.2006.050706.
    1. Draper DW, Bethea HN, He YW. Toll-like receptor 2-dependent and -independent activation of macrophages by group B streptococci. Immunol Lett. 2006;102(2):202–214. doi: 10.1016/j.imlet.2005.09.005.
    1. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10):2534–2543. doi: 10.1097/01.ASN.0000088027.54400.C6.
    1. Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 2003;63(5):1714–1724. doi: 10.1046/j.1523-1755.2003.00928.x.
    1. Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 2004;286(3):F552–63. doi: 10.1152/ajprenal.00285.2002.
    1. Malyszko J, Malyszko JS, Mysliwiec M. Serum neutrophil gelatinase-associated lipocalin correlates with kidney function in renal allograft recipients. Clin Transplant. 2009;23(5):681–686. doi: 10.1111/j.1399-0012.2009.01034.x.
    1. Wagener G, Jan M, Kim M, Mori K, Barasch JM, Sladen RN, Lee HT. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006;105(3):485–491. doi: 10.1097/00000542-200609000-00011.
    1. Haase-Fielitz A, Bellomo R, Devarajan P, Story D, Matalanis G, Dragun D, Haase M. Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery--a prospective cohort study. Crit Care Med. 2009;37(2):553–560. doi: 10.1097/CCM.0b013e318195846e.
    1. Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, Parikh CR, Goldstein SL. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care. 2007;11(4):R84. doi: 10.1186/cc6089.
    1. Wheeler DS, Devarajan P, Ma Q, Harmon K, Monaco M, Cvijanovich N, Wong HR. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med. 2008;36(4):1297–1303. doi: 10.1097/CCM.0b013e318169245a.
    1. Ling W, Zhaohui N, Ben H, Leyi G, Jianping L, Huili D, Jiaqi Q. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron Clin Pract. 2008;108(3):c176–81. doi: 10.1159/000117814.
    1. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S. Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol. 2006;26(3):287–292. doi: 10.1159/000093961.
    1. Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, Barasch J, Devarajan P. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2004;15(12):3073–3082. doi: 10.1097/01.ASN.0000145013.44578.45.
    1. Hornum M, Jorgensen KA, Hansen JM, Nielsen FT, Christensen KB, Mathiesen ER, Feldt-Rasmussen B. New-onset diabetes mellitus after kidney transplantation in Denmark. Clin J Am Soc Nephrol. 2010;5(4):709–716. doi: 10.2215/CJN.05360709.
    1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34(Suppl 1):S62–9.
    1. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462. doi: 10.2337/diacare.22.9.1462. < last_page > 1470.
    1. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41. doi: 10.1159/000180580.
    1. Pedersen KR, Ravn HB, Hjortdal VE, Norregaard R, Povlsen JV. Neutrophil gelatinase-associated lipocalin (NGAL): validation of commercially available ELISA. Scand J Clin Lab Invest. 2010;70(5):374–382. doi: 10.3109/00365513.2010.486868.
    1. Malyszko J, Malyszko JS, Bachorzewska-Gajewska H, Poniatowski B, Dobrzycki S, Mysliwiec M. Neutrophil gelatinase-associated lipocalin is a new and sensitive marker of kidney function in chronic kidney disease patients and renal allograft recipients. Transplant Proc. 2009;41(1):158–161. doi: 10.1016/j.transproceed.2008.10.088.
    1. Dewitte K, Fierens C, Stockl D, Thienpont LM. Application of the Bland-Altman Plot for Interpretation of Method-Comparison Studies: A Critical Investigation of Its Practice. Clin Chem. 2002;48(5):799–801.
    1. de Vinuesa SG, Ortega M, Martinez P, Goicoechea M, Campdera FG, Luno J. Subclinical peripheral arterial disease in patients with chronic kidney disease: prevalence and related risk factors. Kidney Int Suppl. 2005;93(93):S44–7.
    1. Parikh NI, Hwang SJ, Larson MG, Levy D, Fox CS. Chronic kidney disease as a predictor of cardiovascular disease (from the Framingham Heart Study) Am J Cardiol. 2008;102(1):47–53. doi: 10.1016/j.amjcard.2008.02.095.
    1. Giaginis C, Zira A, Katsargyris A, Klonaris C, Theocharis S. Clinical implication of plasma neutrophil gelatinase-associated lipocalin (NGAL) concentrations in patients with advanced carotid atherosclerosis. Clin Chem Lab Med. 2010;48(7):1035–1041. doi: 10.1515/CCLM.2010.211.
    1. Falke P, Elneihoum AM, Ohlsson K. Leukocyte activation: relation to cardiovascular mortality after cerebrovascular ischemia. Cerebrovasc Dis. 2000;10(2):97–101. doi: 10.1159/000016037.
    1. Forsblad J, Gottsater A, Persson K, Jacobsson L, Lindgarde F. Clinical manifestations of atherosclerosis in an elderly population are related to plasma neopterin, NGAL and endothelin-1, but not to Chlamydia pneumoniae serology. Int Angiol. 2002;21(2):173–179.
    1. Castro R, Rivera I, Blom HJ, Jakobs C, Tavares de Almeida I. Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J Inherit Metab Dis. 2006;29(1):3–20. doi: 10.1007/s10545-006-0106-5.
    1. Malyszko J, Bachorzewska-Gajewska H, Malyszko JS, Pawlak K, Dobrzycki S. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in hypertensive and normotensive patients with coronary artery disease. Nephrology (Carlton) 2008;13(2):153–156. doi: 10.1111/j.1440-1797.2007.00899.x.

Source: PubMed

3
Sottoscrivi