Flavonoid and Non-Flavonoid Compounds of Autumn Royal and Egnatia Grape Skin Extracts Affect Membrane PUFA's Profile and Cell Morphology in Human Colon Cancer Cell Lines

Valeria Tutino, Isabella Gigante, Rosa Anna Milella, Valentina De Nunzio, Riccardo Flamini, Mirko De Rosso, Maria Principia Scavo, Nicoletta Depalo, Elisabetta Fanizza, Maria Gabriella Caruso, Maria Notarnicola, Valeria Tutino, Isabella Gigante, Rosa Anna Milella, Valentina De Nunzio, Riccardo Flamini, Mirko De Rosso, Maria Principia Scavo, Nicoletta Depalo, Elisabetta Fanizza, Maria Gabriella Caruso, Maria Notarnicola

Abstract

Grapes contain many flavonoid and non-flavonoid compounds with anticancer effects. In this work we fully characterized the polyphenolic profile of two grape skin extracts (GSEs), Autumn Royal and Egnatia, and assessed their effects on Polyunsaturated Fatty Acid (PUFA) membrane levels of Caco2 and SW480 human colon cancer cell lines. Gene expression of 15-lipoxygenase-1 (15-LOX-1), and peroxisome proliferator-activated receptor gamma (PPAR-γ), as well as cell morphology, were evaluated. The polyphenolic composition was analyzed by Ultra-High-Performance Liquid Chromatography/Quadrupole-Time of Flight mass spectrometry (UHPLC/QTOF) analysis. PUFA levels were evaluated by gas chromatography, and gene expression levels of 15-LOX-1 and PPAR-γ were analyzed by real-time Polymerase Chain Reaction (PCR). Morphological cell changes caused by GSEs were identified by field emission scanning electron microscope (FE-SEM) and photomicrograph examination. We detected a different profile of flavonoid and non-flavonoid compounds in Autumn Royal and Egnatia GSEs. Cultured cells showed an increase of total PUFA levels mainly after treatment with Autumn Royal grape, and were richer in flavonoids when compared with the Egnatia variety. Both GSEs were able to affect 15-LOX-1 and PPAR-γ gene expression and cell morphology. Our results highlighted a new antitumor mechanism of GSEs that involves membrane PUFAs and their downstream pathways.

Keywords: cell morphology; flavonoids; human colon cancer cells; membrane PUFAs profile; non-flavonoids.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Anthocyanin composition of Autumn Royal and Egnatia table grape skin extracts expressed as the relative percentages (%) of M+• signals intensity in the positive-ion Ultra-High-Performance Liquid Chromatography/Quadrupole-Time of Flight mass spectrometry (UHPLC/QTOF) chromatogram.
Figure 2
Figure 2
Flavonoid and non-flavonoid composition of Autumn Royal and Egnatia table grape skin extracts expressed as the relative percentages (%) of the total [M − H]− signal intensity in the negative-ion Ultra-High-Performance Liquid Chromatography/Quadrupole-Time of Flight mass spectrometry (UHPLC/QTOF) chromatogram.
Figure 3
Figure 3
(a) 15-LOX-1 gene expression levels detected in Caco2 and SW480 cells treated with increasing concentrations (20, 50, 80 µg/mL) of Autumn Royal and Egnatia GSEs for 48 h of incubation; (b) PPAR-γ gene expression levels detected in Caco2 and SW480 cells treated with increasing concentrations (20, 50, 80 µg/mL) of Autumn Royal and Egnatia GSEs for 48 h of incubation. All data are expressed as mean ± Standard Deviation (SD) of three consecutive experiments. p-value was determined by ANOVA with Dunnett’s posttest. ** p < 0.03 and *** p < 0.01 versus untreated control group (CTR).
Figure 4
Figure 4
(a) Representative field emission scanning electron microscope (FE-SEM) micrographs (scale bar 5 µm, acquisition voltage 3 kV) of Caco2 cell line treated with increasing concentrations (10, 20, 50, 80 µg/mL) of Autumn Royal GSE after 24 (T1) and 48 (T2) h of incubation; (b) Representative FE-SEM micrographs (scale bar 5 µm, acquisition voltage 3 kV) of Caco2 cell line treated with increasing concentrations (10, 20, 50, 80 µg/mL) of Egnatia GSE after 24 (T1) and 48 (T2) h of incubation. The FE-SEM micrographs were selected as representative of a series of images collected on each sample. Untreated cells were used as control (CTR) at T0, T1, and T2. Each experiment was performed in triplicate.
Figure 5
Figure 5
(a) Representative field emission scanning electron microscope (FE-SEM) micrographs (scale bar 5 µm, acquisition voltage 3 kV) of SW480 cell line treated with increasing concentrations (10, 20, 50, 80 µg/mL) of Autumn Royal GSE after 24 (T1) and 48 (T2) h of incubation; (b) Representative FE-SEM micrographs (scale bar 5 µm, acquisition voltage 3 kV) of SW480 cell line treated with increasing concentrations (10, 20, 50, 80 µg/mL) of Egnatia GSE after 24 (T1) and 48 (T2) h of incubation. The FE-SEM micrographs were selected as representative of a series of images collected on each sample. Untreated cells were used as control (CTR) at T0, T1, and T2. Each experiment was performed in triplicate.

References

    1. Magrone T., Magrone M., Russo M.A., Jirillo E. Magrone Recent Advances on the Anti-Inflammatory and Antioxidant Properties of Red Grape Polyphenols: In Vitro and In Vivo Studies. Antioxidants. 2019;9:35. doi: 10.3390/antiox9010035.
    1. Mojzer E.B., Hrnčič M.K., Škerget M., Knez Ž., Bren U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules. 2016;21:901. doi: 10.3390/molecules21070901.
    1. Durazzo A., Lucarini M., Souto E.B., Cicala C., Caiazzo E., Izzo A.A., Novellino E., Santini A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019;33:2221–2243. doi: 10.1002/ptr.6419.
    1. Pereira D.M., Valentão P., Pereira J.A., Andrade P.B. Phenolics: From Chemistry to Biology. Molecules. 2009;14:2202–2211. doi: 10.3390/molecules14062202.
    1. Xia E.-Q., Deng G.-F., Guo Y.-J., Li H.-B. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010;11:622–646. doi: 10.3390/ijms11020622.
    1. Hendrich A.B. Flavonoid-membrane interactions: Possible consequences for biological effects of some polyphenolic compounds1. Acta Pharmacol. Sin. 2006;27:27–40. doi: 10.1111/j.1745-7254.2006.00238.x.
    1. Yang J., Xiao Y.-Y. Grape Phytochemicals and Associated Health Benefits. Crit. Rev. Food Sci. Nutr. 2013;53:1202–1225. doi: 10.1080/10408398.2012.692408.
    1. Lee H.S., Ha A.W., Kim W.K. Effect of resveratrol on the metastasis of 4T1 mouse breast cancer cells in vitro and in vivo. Nutr. Res. Pr. 2012;6:294–300. doi: 10.4162/nrp.2012.6.4.294.
    1. Wang L., Ling Y., Chen Y., Li C.-L., Feng F., You Q.-D., Lu N., Guo Q. Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells. Cancer Lett. 2010;297:42–48. doi: 10.1016/j.canlet.2010.04.022.
    1. Mantena S.K., Baliga M.S., Katiyar S.K. Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesis. 2006;27:1682–1691. doi: 10.1093/carcin/bgl030.
    1. Ramos S. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling pathways. Mol. Nutr. Food Res. 2008;52:507–526. doi: 10.1002/mnfr.200700326.
    1. Valenzuela M., Bastias L., Montenegro I., Werner E., Madrid A., Godoy P., Párraga M., Villena J. Autumn Royal and Ribier Grape Juice Extracts Reduced Viability and Metastatic Potential of Colon Cancer Cells. Evid.-Based Complement. Altern. Med. 2018;2018:1–7. doi: 10.1155/2018/2517080.
    1. Avtanski D., Poretsky L. Phyto-polyphenols as potential inhibitors of breast cancer metastasis. Mol. Med. 2018;24:29. doi: 10.1186/s10020-018-0032-7.
    1. Hanikoglu A., Kucuksayan E., Hanikoglu F., Ozben T., Menounou G., Sansone A., Chatgilialoglu C., Di Bella G., Ferreri C. Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes. Can. J. Physiol. Pharmacol. 2020;98:131–138. doi: 10.1139/cjpp-2019-0352.
    1. Ortinau L.C., Pickering R.T., Nickelson K.J., Stromsdorfer K.L., Naik C.Y., Haynes R.A., Bauman D.E., Rector R.S., Fritsche K.L., Ii J.P. Sterculic Oil, a Natural SCD1 Inhibitor, Improves Glucose Tolerance in Obese ob/ob Mice. ISRN Endocrinol. 2012;2012:947323. doi: 10.5402/2012/947323.
    1. Tutino V., Gigante I., Scavo M.P., Refolo M.G., De Nunzio V., Milella R.A., Caruso M.G., Notarnicola M. Stearoyl-CoA Desaturase-1 Enzyme Inhibition by Grape Skin Extracts Affects Membrane Fluidity in Human Colon Cancer Cell Lines. Nutrients. 2020;12:693. doi: 10.3390/nu12030693.
    1. Scaglia N., Igal R.A. Stearoyl-CoA Desaturase Is Involved in the Control of Proliferation, Anchorage-independent Growth, and Survival in Human Transformed Cells. J. Boil. Chem. 2005;280:25339–25349. doi: 10.1074/jbc.M501159200.
    1. Ran H., Zhu Y., Deng R., Zhang Q., Liu X., Feng M., Zhong J., Lin S., Tong X., Su Q. Stearoyl-CoA desaturase-1 promotes colorectal cancer metastasis in response to glucose by suppressing PTEN. J. Exp. Clin. Cancer Res. 2018;37:54. doi: 10.1186/s13046-018-0711-9.
    1. Maria N., Maria G.C., Valeria T., Valentina D.N., Isabella G., Giampiero D.L., Nicola V., Ornella R., Rosa R., Elisa S., et al. Nutrition and lipidomic profile in colorectal cancers. Acta Bio Med. Atenei Parm. 2018;89:87–96.
    1. Long J., Zhang C.-J., Zhu N., Du K., Yin Y.-F., Tan X., Liao D.-F., Qin L. Lipid metabolism and carcinogenesis, cancer development. Am. J. Cancer Res. 2018;8:778–791.
    1. Garcia L.C., Achón-Tuñón M., González-González M.P. The influence of the polyunsaturated fatty acids in the prevention and promotion of cancer. Nutr. Hosp. 2015;32:41–49.
    1. Tutino V., De Nunzio V., Caruso M.G., Veronese N., Lorusso D., Di Masi M., Benedetto M.L., Notarnicola M. Elevated AA/EPA Ratio Represents an Inflammatory Biomarker in Tumor Tissue of Metastatic Colorectal Cancer Patients. Int. J. Mol. Sci. 2019;20:2050. doi: 10.3390/ijms20082050.
    1. Tian R., Zuo X., Jaoude J., Mao F., Colby J., Shureiqi I. ALOX15 as a suppressor of inflammation and cancer: Lost in the link. Prostaglandins Other Lipid Mediat. 2017;132:77–83. doi: 10.1016/j.prostaglandins.2017.01.002.
    1. Serhan C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510:92–101. doi: 10.1038/nature13479.
    1. Bhattacharya S., Mathew G., Jayne D., Pelengaris S., Khan M. 15-Lipoxygenase-1 in Colorectal Cancer: A Review. Tumor Boil. 2009;30:185–199. doi: 10.1159/000236864.
    1. Çimen I., Astarci E., Banerjee S. 15-lipoxygenase-1 exerts its tumor suppressive role by inhibiting nuclear factor-kappa B via activation of PPAR gamma. J. Cell. Biochem. 2011;112:2490–2501. doi: 10.1002/jcb.23174.
    1. Mao F., Wang M., Wang J., Xu W. The role of 15-LOX-1 in colitis and colitis-associated colorectal cancer. Inflamm. Res. 2015;64:661–669. doi: 10.1007/s00011-015-0852-7.
    1. Gigante I., Milella R.A., Tutino V., DeBiase G., Notarangelo L., Giannandrea M.A., De Nunzio V., Orlando A., D’Alessandro R., Caruso M., et al. Autumn Royal and Egnatia Grape Extracts differently modulate Cell Proliferation in Human Colorectal Cancer Cells. Endocr. Metab. Immune Disord. Drug Targets. 2020;20:1–19. doi: 10.2174/1871530320666200421102418.
    1. Lin B.-W., Gong C.-C., Song H.-F., Cui Y.-Y. Effects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol. 2016;174:1226–1243. doi: 10.1111/bph.13627.
    1. Hou D.-X., Kai K., Li J.-J., Lin S., Terahara N., Wakamatsu M., Fujii M., Young M.R., Colburn N. Anthocyanidins inhibit activator protein 1 activity and cell transformation: Structure-activity relationship and molecular mechanisms. Carcinogenesis. 2004;25:29–36. doi: 10.1093/carcin/bgg184.
    1. Unusan N. Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. J. Funct. Foods. 2020;67:103861. doi: 10.1016/j.jff.2020.103861.
    1. Nandakumar V., Singh T., Katiyar S.K. Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett. 2008;269:378–387. doi: 10.1016/j.canlet.2008.03.049.
    1. Wang T.-Y., Li Q., Bi K.-S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018;13:12–23. doi: 10.1016/j.ajps.2017.08.004.
    1. Oteiza P.I., Erlejman A.G., Verstraeten S.V., Keen C.L., Fraga C.G. Flavonoid-membrane Interactions: A Protective Role of Flavonoids at the Membrane Surface? Clin. Dev. Immunol. 2005;12:19–25. doi: 10.1080/10446670410001722168.
    1. Mandić L., Sadžak A., Strasser V., Baranović G., Jurašin D.D., Sikirić M.D., Šegota S. Enhanced Protection of Biological Membranes during Lipid Peroxidation: Study of the Interactions between Flavonoid Loaded Mesoporous Silica Nanoparticles and Model Cell Membranes. Int. J. Mol. Sci. 2019;20:2709. doi: 10.3390/ijms20112709.
    1. Pakiet A., Kobiela J., Stepnowski P., Sledzinski T., Mika A. Changes in lipids composition and metabolism in colorectal cancer: A review. Lipids Health Dis. 2019;18:29. doi: 10.1186/s12944-019-0977-8.
    1. Else P.L. The highly unnatural fatty acid profile of cells in culture. Prog. Lipid Res. 2020;77:101017. doi: 10.1016/j.plipres.2019.101017.
    1. Fujiwara F., Todo S., Imashuku S. Antitumor effect of gamma-linolenic acid on cultured human neuroblastoma cells. Prostaglandins Leukot. Med. 1986;23:311–320. doi: 10.1016/0262-1746(86)90198-8.
    1. Das U.N. Essential fatty acids and their metabolites and cancer. Nutrition. 1999;15:239–240.
    1. Ramchurren N., Karmali R. Effects of gamma-linolenic and dihomo-gamma-linolenic acids on 7,12-dimethylbenz(α)anthracene-induced mammary tumors in rats. Prostaglandins Leukot. Essent. Fat. Acids. 1995;53:95–101. doi: 10.1016/0952-3278(95)90135-3.
    1. Xu Y., Qian S.Y. Anti-cancer activities of omega-6 polyunsaturated fatty acids. Biomed. J. 2014;37:112–119. doi: 10.4103/2319-4170.131378.
    1. Çimen I., Tunçay S., Banerjee S. 15-Lipoxygenase-1 expression suppresses the invasive properties of colorectal carcinoma cell lines HCT-116 and HT-29. Cancer Sci. 2009;100:2283–2291. doi: 10.1111/j.1349-7006.2009.01313.x.
    1. Derry M., Raina K., Agarwal R., Agarwal C. Differential effects of grape seed extract against human colorectal cancer cell lines: The intricate role of death receptors and mitochondria. Cancer Lett. 2012;334:69–78. doi: 10.1016/j.canlet.2012.12.015.
    1. DiNicola S., Cucina A., Pasqualato A., Proietti S., D’Anselmi F., Pasqua G., Santamaria A.R., Coluccia P., Lagana A., Antonacci D., et al. Apoptosis-inducing factor and caspase-dependent apoptotic pathways triggered by different grape seed extracts on human colon cancer cell line Caco-2. Br. J. Nutr. 2010;104:824–832. doi: 10.1017/S0007114510001522.
    1. Kaur M., Mandair R., Agarwal R., Agarwal C. Grape Seed Extract Induces Cell Cycle Arrest and Apoptosis in Human Colon Carcinoma Cells. Nutr. Cancer. 2008;60:2–11. doi: 10.1080/01635580802381295.
    1. DiNicola S., Cucina A., Pasqualato A., D’Anselmi F., Proietti S., Lisi E., Pasqua G., Antonacci D., Bizzarri M. Antiproliferative and Apoptotic Effects Triggered by Grape Seed Extract (GSE) versus Epigallocatechin and Procyanidins on Colon Cancer Cell Lines. Int. J. Mol. Sci. 2012;13:651–664. doi: 10.3390/ijms13010651.
    1. Gao Y., Tollefsbol T.O. Combinational Proanthocyanidins and Resveratrol Synergistically Inhibit Human Breast Cancer Cells and Impact Epigenetic–Mediating Machinery. Int. J. Mol. Sci. 2018;19:2204. doi: 10.3390/ijms19082204.
    1. Wang S., Tian Q., An F. Growth inhibition and apoptotic effects of total flavonoids from Trollius chinensis on human breast cancer MCF-7 cells. Oncol. Lett. 2016;12:1705–1710. doi: 10.3892/ol.2016.4898.
    1. Subramanian A.P., Jaganathan S.K., Mandal M., Supriyanto E., Muhamad I.I. Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J. Gastroenterol. 2016;22:3952–3961. doi: 10.3748/wjg.v22.i15.3952.
    1. Milella R.A., Basile T., Alba V., Gasparro M., Giannandrea M.A., DeBiase G., Genghi R., Antonacci D. Optimized ultrasonic-assisted extraction of phenolic antioxidants from grape (Vitis vinifera L.) skin using response surface methodology. J. Food Sci. Technol. 2019;56:4417–4428. doi: 10.1007/s13197-019-03946-9.
    1. Flamini R., De Rosso M., De Marchi F., Vedova A.D., Panighel A., Gardiman M., Maoz I., Bavaresco L. An innovative approach to grape metabolomics: Stilbene profiling by suspect screening analysis. Metabolomics. 2013;9:1243–1253. doi: 10.1007/s11306-013-0530-0.
    1. Folch J., Lees M., Stanley G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Boil. Chem. 1957;226:497–509.
    1. DePalo N., Fanizza E., Vischio F., Denora N., Laquintana V., Cutrignelli A., Striccoli M., Giannelli G., Agostiano A., Curri M.L., et al. Imaging modification of colon carcinoma cells exposed to lipid based nanovectors for drug delivery: A scanning electron microscopy investigation. RSC Adv. 2019;9:21810–21825. doi: 10.1039/C9RA02381J.

Source: PubMed

3
Sottoscrivi