Identification of Susceptibility Loci for Spontaneous Coronary Artery Dissection

Tamiel N Turley, Megan M O'Byrne, Matthew L Kosel, Mariza de Andrade, Rajiv Gulati, Sharonne N Hayes, Marysia S Tweet, Timothy M Olson, Tamiel N Turley, Megan M O'Byrne, Matthew L Kosel, Mariza de Andrade, Rajiv Gulati, Sharonne N Hayes, Marysia S Tweet, Timothy M Olson

Abstract

Importance: Spontaneous coronary artery dissection (SCAD), an idiopathic disorder that predominantly affects young to middle-aged women, has emerged as an important cause of acute coronary syndrome, myocardial infarction, and sudden cardiac death.

Objective: To identify common single-nucleotide variants (SNVs) associated with SCAD susceptibility.

Design, setting, and participants: This single-center genome-wide association study examined approximately 5 million genotyped and imputed SNVs and subsequent SNV-targeted replication analysis results in individuals enrolled in the Mayo Clinic SCAD registry from August 30, 2011, to August 2, 2018. Data analysis was performed from June 21, 2017, to December 30, 2019.

Main outcomes and measures: Genetic loci and positional candidate genes associated with SCAD.

Results: This study included 484 white women with SCAD (mean [SD] age, 46.6 [9.2] years) and 1477 white female controls in the discovery cohort (mean [SD] age, 64.0 [14.5] years) and 183 white women with SCAD (mean [SD] age, 47.1 [9.9] years) and 340 white female controls in the replication cohort (mean [SD] age, 51.0 [15.3] years). Associations with SCAD risk reached genome-wide significance at 3 loci (1q21.3 [OR, 1.78; 95% CI, 1.51-2.09; P = 2.63 × 10-12], 6p24.1 [OR, 1.77; 95% CI, 1.51-2.09; P = 7.09 × 10-12], and 12q13.3 [OR, 1.67; 95% CI, 1.42-1.97; P = 3.62 × 10-10]), and 7 loci had evidence suggestive of an association (1q24.2 [OR, 2.10; 95% CI, 1.58-2.79; P = 2.88 × 10-7], 3q22.3 [OR, 1.47; 95% CI, 1.26-1.71; P = 6.65 × 10-7], 4q34.3 [OR, 1.84; 95% CI, 1.44-2.35; P = 9.80 × 10-7], 8q24.3 [OR, 2.57; 95% CI, 1.76-3.75; P = 9.65 × 10-7], 15q21.1 [OR, 1.75; 95% CI, 1.40-2.18; P = 7.23 × 10-7], 16q24.1 [OR, 1.91; 95% CI, 1.49-2.44; P = 2.56 × 10-7], and 21q22.11 [OR, 2.11; 95% CI, 1.59-2.82; P = 3.12 × 10-7]) after adjusting for the top 5 principal components. Associations were validated for 5 of the 10 risk alleles in the replication cohort. In a meta-analysis of the discovery and replication cohorts, associations for the 5 SNVs were significant, with relatively large effect sizes (1q21.3 [OR, 1.77; 95% CI, 1.54-2.03; P = 3.26 × 10-16], 6p24.1 [OR, 1.71; 95% CI, 1.49-1.97; P = 4.59 × 10-14], 12q13.3 [OR, 1.69; 95% CI, 1.47-1.94; P = 1.42 × 10-13], 15q21.1 [OR, 1.79; 95% CI, 1.48-2.17; P = 2.12 × 10-9], and 21q22.11 [OR, 2.18; 95% CI, 1.70-2.81; P = 1.09 × 10-9]). Each index SNV was within or near a gene highly expressed in arterial tissue and previously linked to SCAD (PHACTR1) and/or other vascular disorders (LRP1, LINC00310, and FBN1).

Conclusions and relevance: This study revealed 5 replicated risk loci and positional candidate genes for SCAD, most of which are associated with extracoronary arteriopathies. Moreover, the alternate alleles of 3 SNVs have been previously associated with atherosclerotic coronary artery disease, further implicating allelic susceptibility to coronary artery atherosclerosis vs dissection.

Conflict of interest statement

Conflict of Interest Disclosures: Dr Tweet reported receiving a grant from the National Institutes of Health Building Interdisciplinary Research Careers in Women's Health Scholars Program during the conduct of the study. Dr Olson reported receiving funding from Spontaneous Coronary Artery Dissection (SCAD) Research during the conduct of the study. No other disclosures were reported.

Figures

Figure 1.. Manhattan Plot of the Discovery…
Figure 1.. Manhattan Plot of the Discovery Genome-Wide Association Analysis
The x-axis designates chromosomal position (23 designates the X chromosome), and the y-axis designates the P value derived by logistic regression on a –log10 scale. The horizontal orange and blue lines indicate the threshold for genome-wide significance (P < 5 × 10−8) and suggestive associations (P < 1 × 10−06), respectively. Identification numbers indicate index SNPs included in the independent replication study, with red font designating those that replicated.
Figure 2.. Regional LocusZoom Plots Demonstrating Positional…
Figure 2.. Regional LocusZoom Plots Demonstrating Positional Candidate Genes
LocusZoom plots for rs4970935 at 1q21.3 (A), rs9349379 at 6p24.1 (B), rs11172113 at 12q13.3 (C), rs2015637 at 15q21.1 (D), and rs28451064 at 21q22 (E). The x-axis indicates chromosomal position and the y-axis the association significance (–log10 [P value]) for the 400 kilobase flanking the index SNP. Linkage disequilibrium estimates (r2) are color-coded. Recombination hotspots are indicated by blue lines.
Figure 3.. Network of Known and Predicted…
Figure 3.. Network of Known and Predicted Functional Associations
Talin 1 (red) interacts with 3 of the genome-wide association study candidate gene-encoding proteins (blue) via actin or integrin isoforms (white). STRING analysis was set at a high confidence interaction score (0.7).

References

    1. Hayes SN, Kim ESH, Saw J, et al. ; American Heart Association Council on Peripheral Vascular Disease; Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; Council on Genomic and Precision Medicine; and Stroke Council . Spontaneous coronary artery dissection: current state of the science: a scientific statement from the American Heart Association. Circulation. 2018;137(19):e523-e557. doi:10.1161/CIR.0000000000000564
    1. Goel K, Tweet M, Olson TM, Maleszewski JJ, Gulati R, Hayes SN. Familial spontaneous coronary artery dissection: evidence for genetic susceptibility. JAMA Intern Med. 2015;175(5):821-826. doi:10.1001/jamainternmed.2014.8307
    1. Turley TN, Theis JL, Sundsbak RS, et al. . Rare missense variants in TLN1 are associated with familial and sporadic spontaneous coronary artery dissection. Circ Genom Precis Med. 2019;12(4):e002437. doi:10.1161/CIRCGEN.118.002437
    1. Adlam D, Olson TM, Combaret N, et al. ; DISCO Consortium; CARDIoGRAMPlusC4D Study Group . Association of the PHACTR1/EDN1 genetic locus with spontaneous coronary artery dissection. J Am Coll Cardiol. 2019;73(1):58-66. doi:10.1016/j.jacc.2018.09.085
    1. Tweet MS, Hayes SN, Pitta SR, et al. . Clinical features, management, and prognosis of spontaneous coronary artery dissection. Circulation. 2012;126(5):579-588. doi:10.1161/CIRCULATIONAHA.112.105718
    1. Bielinski SJ, Chai HS, Pathak J, et al. ; Mayo Genome Consortia . Mayo Genome Consortia: a genotype-phenotype resource for genome-wide association studies with an application to the analysis of circulating bilirubin levels. Mayo Clin Proc. 2011;86(7):606-614. doi:10.4065/mcp.2011.0178
    1. Olson JE, Ryu E, Johnson KJ, et al. . The Mayo Clinic Biobank: a building block for individualized medicine. Mayo Clin Proc. 2013;88(9):952-962. doi:10.1016/j.mayocp.2013.06.006
    1. Purcell S, Neale B, Todd-Brown K, et al. . PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-575. doi:10.1086/519795
    1. GTEx Consortium Human genomics. the Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348(6235):648-660. doi:10.1126/science.1262110
    1. Szklarczyk D, Gable AL, Lyon D, et al. . STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-D613. doi:10.1093/nar/gky1131
    1. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL. The small subunit of the mammalian mitochondrial ribosome: identification of the full complement of ribosomal proteins present. J Biol Chem. 2001;276(22):19363-19374. doi:10.1074/jbc.M100727200
    1. Gopisetty G, Thangarajan R. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: a putative role in human disease. Gene. 2016;589(1):27-35. doi:10.1016/j.gene.2016.05.008
    1. Han Z, Ni J, Smits P, et al. . Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J. 2001;15(6):988-994. doi:10.1096/fsb2fj990934com
    1. Porter S, Clark IM, Kevorkian L, Edwards DR. The ADAMTS metalloproteinases. Biochem J. 2005;386(pt 1):15-27. doi:10.1042/BJ20040424
    1. Hubmacher D, Apte SS. ADAMTS proteins as modulators of microfibril formation and function. Matrix Biol. 2015;47:34-43. doi:10.1016/j.matbio.2015.05.004
    1. Holcomb M, Ding YH, Dai D, et al. . RNA-sequencing analysis of messenger RNA/microRNA in a rabbit aneurysm model identifies pathways and genes of interest. AJNR Am J Neuroradiol. 2015;36(9):1710-1715. doi:10.3174/ajnr.A4390
    1. Kiando SR, Tucker NR, Castro-Vega LJ, et al. . PHACTR1 is a genetic susceptibility locus for fibromuscular dysplasia supporting its complex genetic pattern of inheritance. PLoS Genet. 2016;12(10):e1006367. doi:10.1371/journal.pgen.1006367
    1. Anttila V, Winsvold BS, Gormley P, et al. ; North American Brain Expression Consortium; UK Brain Expression Consortium . Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet. 2013;45(8):912-917. doi:10.1038/ng.2676
    1. Debette S, Kamatani Y, Metso TM, et al. ; International Stroke Genetics Consortium; CADISP Group . Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nat Genet. 2015;47(1):78-83. doi:10.1038/ng.3154
    1. Allen PB, Greenfield AT, Svenningsson P, Haspeslagh DC, Greengard P. Phactrs 1-4: a family of protein phosphatase 1 and actin regulatory proteins. Proc Natl Acad Sci U S A. 2004;101(18):7187-7192. doi:10.1073/pnas.0401673101
    1. Allain B, Jarray R, Borriello L, et al. . Neuropilin-1 regulates a new VEGF-induced gene, Phactr-1, which controls tubulogenesis and modulates lamellipodial dynamics in human endothelial cells. Cell Signal. 2012;24(1):214-223. doi:10.1016/j.cellsig.2011.09.003
    1. Beaudoin M, Gupta RM, Won HH, et al. . Myocardial infarction-associated SNP at 6p24 interferes with MEF2 binding and associates with PHACTR1 expression levels in human coronary arteries. Arterioscler Thromb Vasc Biol. 2015;35(6):1472-1479. doi:10.1161/ATVBAHA.115.305534
    1. Wang X, Musunuru K. Confirmation of causal rs9349379-PHACTR1 expression quantitative trait locus in human-induced pluripotent stem cell endothelial cells. Circ Genom Precis Med. 2018;11(10):e002327. doi:10.1161/CIRCGEN.118.002327
    1. Gupta RM, Hadaya J, Trehan A, et al. . A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell. 2017;170(3):522-533.e15. doi:10.1016/j.cell.2017.06.049
    1. Tweet MS, Miller VM, Hayes SN. The evidence on estrogen, progesterone, and spontaneous coronary artery dissection. JAMA Cardiol. 2019;4(5):403-404. doi:10.1001/jamacardio.2019.0774
    1. Guo DC, Grove ML, Prakash SK, et al. ; GenTAC Investigators; BAVCon Investigators . Genetic variants in LRP1 and ULK4 are associated with acute aortic dissections. Am J Hum Genet. 2016;99(3):762-769. doi:10.1016/j.ajhg.2016.06.034
    1. Orr AW, Pedraza CE, Pallero MA, et al. . Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly. J Cell Biol. 2003;161(6):1179-1189. doi:10.1083/jcb.200302069
    1. Strickland DK, Au DT, Cunfer P, Muratoglu SC. Low-density lipoprotein receptor-related protein-1: role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol. 2014;34(3):487-498. doi:10.1161/ATVBAHA.113.301924
    1. Zhou L, Takayama Y, Boucher P, Tallquist MD, Herz J. LRP1 regulates architecture of the vascular wall by controlling PDGFRbeta-dependent phosphatidylinositol 3-kinase activation. PLoS One. 2009;4(9):e6922. doi:10.1371/journal.pone.0006922
    1. Wingrove CS, Garr E, Godsland IF, Stevenson JC. 17β-oestradiol enhances release of matrix metalloproteinase-2 from human vascular smooth muscle cells. Biochim Biophys Acta. 1998;1406(2):169-174. doi:10.1016/S0925-4439(97)00097-5
    1. Hahn-Dantona E, Ruiz JF, Bornstein P, Strickland DK. The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. J Biol Chem. 2001;276(18):15498-15503. doi:10.1074/jbc.M100121200
    1. LeMaire SA, McDonald ML, Guo DC, et al. . Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat Genet. 2011;43(10):996-1000. doi:10.1038/ng.934
    1. Sakai LY, Keene DR, Engvall E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol. 1986;103(6 Pt 1):2499-2509. doi:10.1083/jcb.103.6.2499
    1. Dietz HC, Cutting GR, Pyeritz RE, et al. . Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337-339. doi:10.1038/352337a0
    1. von Hundelshausen P, Oexle K, Bidzhekov K, et al. . Recurrent spontaneous coronary dissections in a patient with a de novo fibrillin-1 mutation without Marfan syndrome. Thromb Haemost. 2015;113(3):668-670. doi:10.1160/TH14-11-0913
    1. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26-46. doi:10.1016/j.cell.2013.06.020
    1. Li J, Peng W, Du L, Yang Q, Wang C, Mo YY. The oncogenic potentials and diagnostic significance of long non-coding RNA LINC00310 in breast cancer. J Cell Mol Med. 2018;22(9):4486-4495. doi:10.1111/jcmm.13750
    1. Tweet MS, Akhtar NJ, Hayes SN, Best PJ, Gulati R, Araoz PA. Spontaneous coronary artery dissection: acute findings on coronary computed tomography angiography. Eur Heart J Acute Cardiovasc Care. 2019;8(5):467-475. doi:10.1177/2048872617753799
    1. CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 2013;45(1):25-33.
    1. Nikpay M, Goel A, Won HH, et al. . A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121-1130. doi:10.1038/ng.3396
    1. Nelson CP, Goel A, Butterworth AS, et al. ; EPIC-CVD Consortium; CARDIoGRAMplusC4D; UK Biobank CardioMetabolic Consortium CHD working group . Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet. 2017;49(9):1385-1391. doi:10.1038/ng.3913
    1. Webb TR, Erdmann J, Stirrups KE, et al. ; Wellcome Trust Case Control Consortium; MORGAM Investigators; Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators . Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J Am Coll Cardiol. 2017;69(7):823-836. doi:10.1016/j.jacc.2016.11.056
    1. Fils-Aimé N, Dai M, Guo J, et al. . MicroRNA-584 and the protein phosphatase and actin regulator 1 (PHACTR1), a new signaling route through which transforming growth factor-β mediates the migration and actin dynamics of breast cancer cells. J Biol Chem. 2013;288(17):11807-11823. doi:10.1074/jbc.M112.430934
    1. Reschen ME, Lin D, Chalisey A, Soilleux EJ, O’Callaghan CA. Genetic and environmental risk factors for atherosclerosis regulate transcription of phosphatase and actin regulating gene PHACTR1. Atherosclerosis. 2016;250:95-105. doi:10.1016/j.atherosclerosis.2016.04.025
    1. Xian X, Ding Y, Dieckmann M, et al. . LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis. Elife. 2017;6:e29292. doi:10.7554/eLife.29292
    1. Au DT, Ying Z, Hernández-Ochoa EO, et al. . LRP1 (low-density lipoprotein receptor-related protein 1) regulates smooth muscle contractility by modulating Ca2+ signaling and expression of cytoskeleton-related proteins. Arterioscler Thromb Vasc Biol. 2018;38(11):2651-2664. doi:10.1161/ATVBAHA.118.311197
    1. Gough RE, Goult BT. The tale of two talins: two isoforms to fine-tune integrin signalling. FEBS Lett. 2018;592(12):2108-2125. doi:10.1002/1873-3468.13081
    1. Bax DV, Bernard SE, Lomas A, et al. . Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. J Biol Chem. 2003;278(36):34605-34616. doi:10.1074/jbc.M303159200
    1. Wujak L, Böttcher RT, Pak O, et al. . Low density lipoprotein receptor-related protein 1 couples β1 integrin activation to degradation. Cell Mol Life Sci. 2018;75(9):1671-1685. doi:10.1007/s00018-017-2707-6
    1. Sun Y, Chen Y, Li Y, et al. . Association of TSR1 variants and spontaneous coronary artery dissection. J Am Coll Cardiol. 2019;74(2):167-176. doi:10.1016/j.jacc.2019.04.062

Source: PubMed

3
Sottoscrivi