Evaluation of systemic absorption and bronchodilator effect of glycopyrronium bromide delivered by nebulizer or a dry powder inhaler in subjects with chronic obstructive pulmonary disease

Brian R Leaker, Dave Singh, Grant C Nicholson, Blanka Hezelova, Thomas Goodin, Ayca Ozol-Godfrey, Gerald Galluppi, Peter J Barnes, Brian R Leaker, Dave Singh, Grant C Nicholson, Blanka Hezelova, Thomas Goodin, Ayca Ozol-Godfrey, Gerald Galluppi, Peter J Barnes

Abstract

Background: Effective bronchodilator therapy depends upon adequate drug deposition in the lung. COPD patients who are unable to administer medications efficiently with conventional inhalers may benefit from the use of a nebulizer device. The aim of this study was to evaluate the systemic bioavailability and bronchodilator response of glycopyrronium bromide (GLY) administered by a novel nebulizer (eFlow® closed system [CS] vibrating membrane nebulizer) or dry powder inhaler (DPI) in subjects with moderate-to-severe chronic obstructive pulmonary disease (COPD).

Methods: In this randomized, open-label, single-dose, five-way crossover study, subjects received a sequence of either 50 μg GLY delivered by eFlow CS nebulizer (GLY/eFlow) or 63 μg GLY delivered by DPI (GLY/DPI), with and without activated charcoal, followed by intravenous infusion of 50 μg GLY with a washout period of 7 days between doses. Endpoints included plasma pharmacokinetics, safety and efficacy.

Results: The mean (± SD) baseline predicted forced expiratory volume in 1 s (FEV1) of the 30 subjects who completed the study was 51 ± 15%, with a FEV1/forced vital capacity ratio of 50 ± 11%. Without charcoal, the absolute systemic bioavailability of GLY/eFlow and GLY/DPI were approximately 15 and 22%, respectively. Changes from baseline in FEV1 at 60 min post-dose, without administration of charcoal, were 0.180 L and 0.220 L for GLY/eFlow and GLY/DPI, respectively; FEV1 improvements were similar when charcoal was administered (0.220 L for both GLY/eFlow and GLY/DPI). There were no significant differences in spirometry between the two devices. Fewer subjects administered GLY/eFlow reported adverse events (n = 15) than GLY/DPI (n = 18).

Conclusions: After single doses, GLY/DPI delivered numerically higher peak and steady state levels of drug than did GLY/eFlow. Nebulized GLY produced similar bronchodilation but lower systemic levels of drug than GLY/DPI. Slightly higher number of subjects reported adverse events with GLY/DPI than with GLY/eFlow. Nebulized GLY may offer an effective alternative to patients with COPD not adequately treated with other devices.

Trial registration: NCT02512302 (ClinicalTrials.gov). Registered 28 May 2015.

Keywords: Bioavailability; COPD; Glycopyrronium bromide; Nebulizer.

Conflict of interest statement

TG, AO-G and GG are employees of Sunovion Pharmaceuticals Inc.

Figures

Fig. 1
Fig. 1
The eFlow® CS (Magnair®) nebulizer system
Fig. 2
Fig. 2
GOLDEN 7 study schematic. Washout of more than 7 days required approval by the Sponsor. All doses were administered at the same time of day (± 1 h), 7 days apart. aSubjects had follow-up telephone contact on Day 36 (± 1 day) to assess safety. Subjects who discontinued prior to Visit 6 had follow-up telephone contact 5 to 7 days after their last study treatment. EOT, end of treatment
Fig. 3
Fig. 3
Mean (±SD) glycopyrronium bromide plasma concentration values by treatment (PK population). Note: Pre-dose was 15 min prior to dosing; 0 was immediately at the end of the inhalation or IV infusion. Unusually high concentration values of 77,400 pg/mL, 1,520,000 pg/mL, and 1,250,000 pg/mL were excluded from the PK analysis and descriptive statistics for three subjects receiving IV infusion 50 μg. Note: Lower SD bars are missing where values are below zero; negative values cannot be displayed on a logarithmic scale. DPI, dry powder inhaler. GLY, glycopyrronium bromide. IV, intravenous. PK, pharmacokinetic. SD, standard deviation
Fig. 4
Fig. 4
Comparison of GLY/eFlow versus GLY/DPI fully dose-normalized systemic exposure to glycopyrronium bromide. Note: Lower SD bars are missing where values are below zero; negative values cannot be displayed on a logarithmic scale. DPI, dry powder inhaler. GLY, glycopyrronium bromide. IV, intravenous. SD, standard deviation
Fig. 5
Fig. 5
Summary of mean FEV1 (L) by time point on treatment day. CI, confidence interval. DPI, dry powder inhaler. FEV1, forced expiratory volume in 1 s. GLY, glycopyrronium bromide

References

    1. Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet. 2012;379:1341–1351. doi: 10.1016/S0140-6736(11)60968-9.
    1. Haddad EB, Patel H, Keeling JE, Yacoub MH, Barnes PJ, Belvisi MG. Pharmacological characterization of the muscarinic receptor antagonist, glycopyrrolate, in human and guinea-pig airways. Br J Pharmacol. 1999;127:413–420. doi: 10.1038/sj.bjp.0702573.
    1. Leaker BR, Barnes PJ, Jones CR, Tutuncu A, Singh D. Efficacy and safety of nebulized glycopyrrolate for administration using a high efficiency nebulizer in patients with chronic obstructive pulmonary disease. Br J Clin Pharmacol. 2015;79:492–500. doi: 10.1111/bcp.12517.
    1. Sunovion Pharmaceuticals Inc . LONHALA® MAGNAIR® prescribing information. 2018.
    1. Melani AS, Bonavia M, Cilenti V, Cinti C, Lodi M, Martucci P, Serra M, Scichilone N, Sestini P, Aliani M, Neri M, Gruppo Educazionale Associazione Italiana Pneumologi Ospedalieri Inhaler mishandling remains common in real life and is associated with reduced disease control. Respir Med. 2011;105:930–938. doi: 10.1016/j.rmed.2011.01.005.
    1. Pham S, Ferguson GT, Kerwin E, Goodin T, Wheeler A, Bauer A. In vitro characterization of the eFlow closed system nebulizer with glycopyrrolate inhalation solution. J Aerosol Med Pulm Drug Deliv. 2018;31:162–169. doi: 10.1089/jamp.2017.1384.
    1. Chapman KR, Fogarty CM, Peckitt C, Lassen C, Jadayel D, Dederichs J, Dalvi M, Kramer B. Delivery characteristics and patients’ handling of two single-dose dry-powder inhalers used in COPD. Int J Chron Obstruct Pulmon Dis. 2011;6:353–363.
    1. Novartis Pharmaceuticals UK Ltd . Seebri Breezhaler inhalation powder, hard capsules 44mcg. 2018.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J, Force AET. Standardisation of spirometry. Eur Respir J. 2005;26:319–338. doi: 10.1183/09031936.05.00034805.
    1. Chrystyn H. Methods to identify drug deposition in the lungs following inhalation. Br J Clin Pharmacol. 2001;51:289–299. doi: 10.1046/j.1365-2125.2001.01304.x.
    1. Bartels C, Looby M, Sechaud R, Kaiser G. Determination of the pharmacokinetics of glycopyrronium in the lung using a population pharmacokinetic modelling approach. Br J Clin Pharmacol. 2013;76:868–879. doi: 10.1111/bcp.12118.
    1. Rennard SI, Fogarty C, Ferguson GT, Orevillo CJ, St Rose E, Fischer T, Alameda P, Reisner C. A novel glycopyrrolate metered dose inhaler formulation demonstrates superior bronchodilator efficacy relative to placebo and comparable efficacy and safety to Spiriva® Handihaler® in patients with COPD. Am J Respir Crit Care Med. 2010;181:A4450.
    1. D'Urzo A, Ferguson GT, van Noord JA, Hirata K, Martin C, Horton R, Lu Y, Banerji D, Overend T. Efficacy and safety of once-daily NVA237 in patients with moderate-to-severe COPD: the GLOW1 trial. Respir Res. 2011;12:156. doi: 10.1186/1465-9921-12-156.
    1. Chapman KR, Beeh KM, Beier J, Bateman ED, D'Urzo A, Nutbrown R, Henley M, Chen H, Overend T, D'Andrea P. A blinded evaluation of the efficacy and safety of glycopyrronium, a once-daily long-acting muscarinic antagonist, versus tiotropium, in patients with COPD: the GLOW5 study. BMC Pulm Med. 2014;14:4. doi: 10.1186/1471-2466-14-4.
    1. D'Urzo AD, Kerwin EM, Chapman KR, Decramer M, DiGiovanni R, D'Andrea P, Hu H, Goyal P, Altman P. Safety of inhaled glycopyrronium in patients with COPD: a comprehensive analysis of clinical studies and post-marketing data. Int J Chron Obstruct Pulmon Dis. 2015;10:1599–1612. doi: 10.2147/COPD.S81266.
    1. Kerwin E, Donohue JF, Goodin T, Tosiello R, Wheeler A, Ferguson GT. Efficacy and safety of glycopyrrolate/eFlow® CS (nebulized glycopyrrolate) in moderate-to-very-severe COPD: results from the glycopyrrolate for obstructive lung disease via electronic nebulizer (GOLDEN) 3 and 4 randomized controlled trials. Respir Med. 2017;32:238–250. doi: 10.1016/j.rmed.2017.07.011.
    1. Donohue J, Goodin T, Tosiello R, Wheeler A. Dose selection for glycopyrrolate/eFlow® phase III clinical studies: results from GOLDEN (Glycopyrrolate for obstructive lung disease via electronic nebulizer) phase II dose-finding studies. Respir Res. 2017;18:202. doi: 10.1186/s12931-017-0681-z.
    1. Singh D, Leaker B, Tutuncu A. Efficacy and safety of nebulized glycopyrrolate (EP-101) for administration using high efficiency nebulizer in patients with COPD. Eur Respir J. 2011;38:865.
    1. Singh D, Collarini S, Poli G, Acerbi D, Amadasi A, Rusca A. Effect of AeroChamber plus on the lung and systemic bioavailability of beclometasone dipropionate/formoterol pMDI. Br J Clin Pharmacol. 2011;72:932–939. doi: 10.1111/j.1365-2125.2011.04024.x.
    1. Donohue JF. Minimal clinically important differences in COPD lung function. COPD. 2005;2:111–124. doi: 10.1081/COPD-200053377.
    1. Tashkin DP, Klein GL, Colman SS, Zayed H, Schonfeld WH. Comparing COPD treatment: nebulizer, metered dose inhaler, and concomitant therapy. Am J Med. 2007;120:435–441. doi: 10.1016/j.amjmed.2006.07.043.
    1. Lavorini F, Magnan A, Dubus JC, Voshaar T, Corbetta L, Broeders M, Dekhuijzen R, Sanchis J, Viejo JL, Barnes P, Corrigan C, Levy M, Crompton GK. Effect of incorrect use of dry powder inhalers on management of patients with asthma and COPD. Respir Med. 2008;102:593–604. doi: 10.1016/j.rmed.2007.11.003.
    1. Vanderman AJ, Moss JM, Bailey JC, Melnyk SD, Brown JN. Inhaler misuse in an older adult population. Consult Pharm. 2015;30:92–100. doi: 10.4140/TCP.n.2015.92.
    1. Barta SK, Crawford A, Roberts CM. Survey of patients’ views of domiciliary nebuliser treatment for chronic lung disease. Respir Med. 2002;96:375–381. doi: 10.1053/rmed.2001.1292.

Source: PubMed

3
Sottoscrivi