Starchy Carbohydrates in a Healthy Diet: The Role of the Humble Potato

Tracey M Robertson, Abdulrahman Z Alzaabi, M Denise Robertson, Barbara A Fielding, Tracey M Robertson, Abdulrahman Z Alzaabi, M Denise Robertson, Barbara A Fielding

Abstract

Potatoes have been an affordable, staple part of the diet for many hundreds of years. Recently however, there has been a decline in consumption, perhaps influenced by erroneous reports of being an unhealthy food. This review provides an overview of the nutritional value of potatoes and examines the evidence for associations between potato consumption and non-communicable diseases. Potatoes are an important source of micronutrients, such as vitamin C, vitamin B6, potassium, folate, and iron and contribute a significant amount of fibre to the diet. However, nutrient content is affected by cooking method; boiling causes leaching of water-soluble nutrients, whereas frying can increase the resistant starch content of the cooked potato. Epidemiological studies have reported associations between potato intake and obesity, type 2 diabetes and cardiovascular disease. However, results are contradictory and confounded by lack of detail on cooking methods. Indeed, potatoes have been reported to be more satiating than other starchy carbohydrates, such as pasta and rice, which may aid weight maintenance. Future research should consider cooking methods in the study design in order to reduce confounding factors and further explore the health impact of this food.

Keywords: CVD; T2DM; fibre; nutrition; obesity; potato; resistant starch; satiety.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Global production of major starchy carbohydrate crops in 2016 [10].
Figure 2
Figure 2
Top twelve producers of potato by country in 2016 [10].
Figure 3
Figure 3
Annual per capita supply of potatoes, available for food, in 2013, as a marker of potential consumption [10]. Figures estimated based on the amounts produced, exported and imported, with deductions made for losses during storage and transport and amounts used for seed, animal feed, and non-food uses.

References

    1. Scientific Advisory Committee on Nutrition . SACN Carbohydrates and Health Report. Public Health England; London, UK: 2015.
    1. Seidelmann S.B., Claggett B., Cheng S., Henglin M., Shah A., Steffen L.M., Folsom A.R., Rimm E.B., Willett W.C., Solomon S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health. 2018 doi: 10.1016/S2468-2667(18)30135-X.
    1. Mann J., Cummings J.H., Englyst H.N., Key T., Liu S., Riccardi G., Summerbell C., Uauy R., van Dam R.M., Venn B., et al. FAO/WHO Scientific Update on carbohydrates in human nutrition: Conclusions. Eur. J. Clin. Nutr. 2007;61:S132–S137. doi: 10.1038/sj.ejcn.1602943.
    1. Eat Well—. [(accessed on 6 August 2018)]; Available online:
    1. Haverkort A.J., de Ruijter F.J., van Evert F.K., Conijn J.G., Rutgers B. Worldwide Sustainability Hotspots in Potato Cultivation. 1. Identification and Mapping. Potato Res. 2013;56:343–353. doi: 10.1007/s11540-013-9247-8.
    1. Thomas G., Sansonetti G. Food and Agriculture Organization of the United Nations. New Light on a Hidden Treasure: International Year of the Potato 2008, an End-of-Year Review. Food and Agriculture Organization of the United Nations; Rome, Italy: 2009.
    1. Riley H. Potato consumption in the UK—Why is “meat and two veg” no longer the traditional British meal? Nutr. Bull. 2010;35:320–331. doi: 10.1111/j.1467-3010.2010.01864.x.
    1. Burlingame B., Mouillé B., Charrondière R. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J. Food Compos. Anal. 2009;22:494–502. doi: 10.1016/j.jfca.2009.09.001.
    1. Barrell P.J., Meiyalaghan S., Jacobs J.M.E., Conner A.J. Applications of biotechnology and genomics in potato improvement. Plant Biotechnol. J. 2013;11:907–920. doi: 10.1111/pbi.12099.
    1. Food and Agriculture Organization of the United Nations FAOSTAT. [(accessed on 23 August 2018)]; Available online: .
    1. Ranum P., Peña-Rosas J.P., Garcia-Casal M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014;1312:105–112. doi: 10.1111/nyas.12396.
    1. McCollum E.V., Simmonds N., Parsons H.T. The dietary properties of the potato. J. Biol. Chem. 1918;36:197–210.
    1. Gibson S., Kurilich A.C. The nutritional value of potatoes and potato products in the UK diet. Nutr. Bull. 2013;38:389–399. doi: 10.1111/nbu.12057.
    1. Family Food 2016/17: Purchases—. [(accessed on 1 October 2018)]; Available online: .
    1. Attah A.O., Braaten T., Skeie G. Change in potato consumption among Norwegian women 1998–2005-The Norwegian Women and Cancer study (NOWAC) PLoS ONE. 2017;12:e0179441. doi: 10.1371/journal.pone.0179441.
    1. Churuangsuk C., Kherouf M., Combet E., Lean M. Low-carbohydrate diets for overweight and obesity: A systematic review of the systematic reviews. Obes. Rev. 2018 doi: 10.1111/obr.12744.
    1. Camire M.E., Kubow S., Donnelly D.J. Potatoes and Human Health. Crit. Rev. Food Sci. Nutr. 2009;49:823–840. doi: 10.1080/10408390903041996.
    1. Borch D., Juul-Hindsgaul N., Veller M., Astrup A., Jaskolowski J., Raben A. Potatoes and risk of obesity, type 2 diabetes, and cardiovascular disease in apparently healthy adults: A systematic review of clinical intervention and observational studies. Am. J. Clin. Nutr. 2016;104:489–498. doi: 10.3945/ajcn.116.132332.
    1. Schwingshackl L., Schwedhelm C., Hoffmann G., Boeing H. Potatoes and risk of chronic disease: A systematic review and dose–response meta-analysis. Eur. J. Nutr. 2018 doi: 10.1007/s00394-018-1774-2.
    1. McGill C.R., Kurilich A.C., Davignon J. The role of potatoes and potato components in cardiometabolic health: A review. Ann. Med. 2013;45:467–473. doi: 10.3109/07853890.2013.813633.
    1. King J.C., Slavin J.L. White potatoes, human health, and dietary guidance. Adv. Nutr. 2013;4:393S–401S. doi: 10.3945/an.112.003525.
    1. Tian J., Chen J., Ye X., Chen S. Health benefits of the potato affected by domestic cooking: A review. Food Chem. 2016;202:165–175. doi: 10.1016/j.foodchem.2016.01.120.
    1. Zeeman S.C., Kossmann J., Smith A.M. Starch: Its Metabolism, Evolution, and Biotechnological Modification in Plants. Annu. Rev. Plant Biol. 2010;61:209–234. doi: 10.1146/annurev-arplant-042809-112301.
    1. Lewosz J., Reda S., Ryś D., Jastrzębski K., Piątek I. Chemical composition of potato tubers and their resistance on mechanical damage. Biul. Inst. Ziemn. 1976;18:31–46.
    1. Kita A. The influence of potato chemical composition on crisp texture. Food Chem. 2002;76:173–179. doi: 10.1016/S0308-8146(01)00260-6.
    1. Public Health England . National Diet and Nutrition Survey: Results from Years 7 and 8 (Combined) of the Rolling Programme (2014/2015 to 2015/2016) Public Health England; London, UK: 2018.
    1. Slavin J.L. Carbohydrates, Dietary Fiber, and Resistant Starch in White Vegetables: Links to Health Outcomes. Adv. Nutr. 2013;4:351S–355S. doi: 10.3945/an.112.003491.
    1. Li Y.-D., Xu T.-C., Xiao J.-X., Zong A.-Z., Qiu B., Jia M., Liu L.-N., Liu W. Efficacy of potato resistant starch prepared by microwave–toughening treatment. Carbohydr. Polym. 2018;192:299–307. doi: 10.1016/j.carbpol.2018.03.076.
    1. Zhao X., Andersson M., Andersson R. Resistant starch and other dietary fiber components in tubers from a high-amylose potato. Food Chem. 2018;251:58–63. doi: 10.1016/j.foodchem.2018.01.028.
    1. Yang Y., Achaerandio I., Pujolà M. Effect of the intensity of cooking methods on the nutritional and physical properties of potato tubers. Food Chem. 2016;197:1301–1310. doi: 10.1016/j.foodchem.2015.11.028.
    1. Goñi I., Bravo L., Larrauri J.A., Calixto F.S. Resistant starch in potatoes deep-fried in olive oil. Food Chem. 1997;59:269–272. doi: 10.1016/S0308-8146(96)00275-0.
    1. Raatz S.K., Idso L., Johnson L.K., Jackson M.I., Combs G.F. Resistant starch analysis of commonly consumed potatoes: Content varies by cooking method and service temperature but not by variety. Food Chem. 2016;208:297–300. doi: 10.1016/j.foodchem.2016.03.120.
    1. Kawai K., Takato S., Ueda M., Ohnishi N., Viriyarattanasak C., Kajiwara K. Effects of fatty acid and emulsifier on the complex formation and in vitro digestibility of gelatinized potato starch. Int. J. Food Prop. 2017;20:1500–1510. doi: 10.1080/10942912.2016.1212877.
    1. Singh Yadav B. Effect of frying, baking and storage conditions on resistant starch content of foods. Br. Food J. 2011;113:710–719. doi: 10.1108/00070701111140061.
    1. British Nutrition Foundation Protein. [(accessed on 2 October 2018)]; Available online: .
    1. Helle S., Bray F., Verbeke J., Devassine S., Courseaux A., Facon M., Tokarski C., Rolando C., Szydlowski N. Proteome Analysis of Potato Starch Reveals the Presence of New Starch Metabolic Proteins as Well as Multiple Protease Inhibitors. Front. Plant Sci. 2018;9:746. doi: 10.3389/fpls.2018.00746.
    1. USDA Food Composition Databases. [(accessed on 6 August 2018)]; Available online:
    1. Bethke P.C., Jansky S.H. The Effects of Boiling and Leaching on the Content of Potassium and Other Minerals in Potatoes. J. Food Sci. 2008;73:H80–H85. doi: 10.1111/j.1750-3841.2008.00782.x.
    1. Finglas P.M., Faulks R.M. Nutritional composition of UK retail potatoes, both raw and cooked. J. Sci. Food Agric. 1984;35:1347–1356. doi: 10.1002/jsfa.2740351212.
    1. Han J.-S., Kozukue N., Young K.-S., Lee K.-R., Friedman M. Distribution of Ascorbic Acid in Potato Tubers and in Home-Processed and Commercial Potato Foods. J. Agric. Food Chem. 2004;52:6516–6521. doi: 10.1021/jf0493270.
    1. Lachman J., Hamouz K. Red and purple coloured potatoes as a significant antioxidant source in human nutrition—A review. Plant Soil Environ. 2005;51:477–482. doi: 10.17221/3620-PSE.
    1. Chu Y.-F., Sun J., Wu X., Liu R.H. Antioxidant and Antiproliferative Activities of Common Vegetables. J. Agric. Food Chem. 2002;50:6910–6916. doi: 10.1021/jf020665f.
    1. Kyoung Chun O., Kim D.-O., Smith N., Schroeder D., Taek Han J., Yong Lee C. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J. Sci. Food Agric. 2005;85:1715–1724. doi: 10.1002/jsfa.2176.
    1. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727.
    1. Gordon M.H. Significance of Dietary Antioxidants for Health. Int. J. Mol. Sci. 2011;13:173–179. doi: 10.3390/ijms13010173.
    1. Andersson M., Melander M., Pojmark P., Larsson H., Bülow L., Hofvander P. Targeted gene suppression by RNA interference: An efficient method for production of high-amylose potato lines. J. Biotechnol. 2006;123:137–148. doi: 10.1016/j.jbiotec.2005.11.001.
    1. Burgos G., Muñoa L., Sosa P., Bonierbale M., zum Felde T., Díaz C. In vitro Bioaccessibility of Lutein and Zeaxanthin of Yellow Fleshed Boiled Potatoes. Plant Foods Hum. Nutr. 2013;68:385–390. doi: 10.1007/s11130-013-0381-x.
    1. Brown C.R. Antioxidants in potato. Am. J. Potato Res. 2005;82:163–172. doi: 10.1007/BF02853654.
    1. Stushnoff C., Holm D., Thompson M.D., Jiang W., Thompson H.J., Joyce N.I., Wilson P. Antioxidant Properties of Cultivars and Selections from the Colorado Potato Breeding Program. Am. J. Potato Res. 2008;85:267–276. doi: 10.1007/s12230-008-9032-4.
    1. Chitchumroonchokchai C., Diretto G., Parisi B., Giuliano G., Failla M.L. Potential of golden potatoes to improve vitamin A and vitamin E status in developing countries. PLoS ONE. 2017;12:e0187102. doi: 10.1371/journal.pone.0187102.
    1. Külen O., Stushnoff C., Holm D.G. Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones. J. Sci. Food Agric. 2013;93:2437–2444. doi: 10.1002/jsfa.6053.
    1. Alamar M.C., Tosetti R., Landahl S., Bermejo A., Terry L.A. Assuring Potato Tuber Quality during Storage: A Future Perspective. Front. Plant Sci. 2017;8:2034. doi: 10.3389/fpls.2017.02034.
    1. Öhrvik V., Mattisson I., Wretling S., Åstrand C. Potato—Analysis of Nutrients. National Food Administration; Uppsala, Sweden: 2010.
    1. Mozaffarian D., Hao T., Rimm E.B., Willett W.C., Hu F.B. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N. Engl. J. Med. 2011;364:2392–2404. doi: 10.1056/NEJMoa1014296.
    1. French S.A., Jeffery R.W., Forster J.L., McGovern P.G., Kelder S.H., Baxter J.E. Predictors of weight change over two years among a population of working adults: The Healthy Worker Project. Int. J. Obes. Relat. Metab. Disord. 1994;18:145–154.
    1. Linde J.A., Utter J., Jeffery R.W., Sherwood N.E., Pronk N.P., Boyle R.G. Specific food intake, fat and fiber intake, and behavioral correlates of BMI among overweight and obese members of a managed care organization. Int. J. Behav. Nutr. Phys. Act. 2006;3:42. doi: 10.1186/1479-5868-3-42.
    1. Halkjær J., Tjønneland A., Overvad K., Sørensen T.I.A. Dietary Predictors of 5-Year Changes in Waist Circumference. J. Am. Diet. Assoc. 2009;109:1356–1366. doi: 10.1016/j.jada.2009.05.015.
    1. Halkjaer J., Sørensen T.I.A., Tjønneland A., Togo P., Holst C., Heitmann B.L. Food and drinking patterns as predictors of 6-year BMI-adjusted changes in waist circumference. Br. J. Nutr. 2004;92:735–748. doi: 10.1079/BJN20041246.
    1. Jeffery R.W., Forster J.L., French S.A., Kelder S.H., Lando H.A., McGovern P.G., Jacobs D.R., Jr., Baxter J.E. The Healthy Worker Project: A work-site intervention for weight control and smoking cessation. Am. J. Public Health. 1993;83:395–401. doi: 10.2105/AJPH.83.3.395.
    1. Tjønneland A., Olsen A., Boll K., Stripp C., Christensen J., Engholm G., Overvad K. Study design, exposure variables, and socioeconomic determinants of participation in Diet, Cancer and Health: A population-based prospective cohort study of 57,053 men and women in Denmark. Scand. J. Public Health. 2007;5:432–441. doi: 10.1080/14034940601047986.
    1. Nurses’ Health Study. [(accessed on 1 August 2018)]; Available online:
    1. Health Professionals Follow-Up Study. [(accessed on 1 August 2018)]; Available online:
    1. Villegas R., Liu S., Gao Y.-T., Yang G., Li H., Zheng W., Shu X.O. Prospective Study of Dietary Carbohydrates, Glycemic Index, Glycemic Load, and Incidence of Type 2 Diabetes Mellitus in Middle-aged Chinese Women. Arch. Intern. Med. 2007;167:2310–2316. doi: 10.1001/archinte.167.21.2310.
    1. Hodge A.M., English D.R., O’Dea K., Giles G.G. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care. 2004;27:2701–2706. doi: 10.2337/diacare.27.11.2701.
    1. Liu S., Serdula M., Janket S.-J., Cook N.R., Sesso H.D., Willett W.C., Manson J.E., Buring J.E. A prospective study of fruit and vegetable intake and the risk of type 2 diabetes in women. Diabetes Care. 2004;27:2993–2996. doi: 10.2337/diacare.27.12.2993.
    1. Muraki I., Rimm E.B., Willett W.C., Manson J.E., Hu F.B., Sun Q. Potato Consumption and Risk of Type 2 Diabetes: Results from Three Prospective Cohort Studies. Diabetes Care. 2016;39:376–384. doi: 10.2337/dc15-0547.
    1. Holt S.H., Brand Miller J.C., Petocz P. Interrelationships among postprandial satiety, glucose and insulin responses and changes in subsequent food intake. Eur. J. Clin. Nutr. 1996;50:788–797.
    1. Erdmann J., Hebeisen Y., Lippl F., Wagenpfeil S., Schusdziarra V. Food intake and plasma ghrelin response during potato-, rice- and pasta-rich test meals. Eur. J. Nutr. 2007;46:196–203. doi: 10.1007/s00394-007-0649-8.
    1. Leeman M., Östman E., Björck I. Glycaemic and satiating properties of potato products. Eur. J. Clin. Nutr. 2008;62:87–95. doi: 10.1038/sj.ejcn.1602677.
    1. Geliebter A., Lee M.I.-C., Abdillahi M., Jones J. Satiety following Intake of Potatoes and Other Carbohydrate Test Meals. Ann. Nutr. Metab. 2013;62:37–43. doi: 10.1159/000342638.
    1. Akilen R., Deljoomanesh N., Hunschede S., Smith C.E., Arshad M.U., Kubant R., Anderson G.H. The effects of potatoes and other carbohydrate side dishes consumed with meat on food intake, glycemia and satiety response in children. Nutr. Diabetes. 2016;6:e195. doi: 10.1038/nutd.2016.1.
    1. Diaz-Toledo C., Kurilich A.C., Re R., Wickham M.S.J., Chambers L.C. Satiety Impact of Different Potato Products Compared to Pasta Control. J. Am. Coll. Nutr. 2016;35:537–543. doi: 10.1080/07315724.2015.1042560.
    1. Geliebter A. Gastric distension and gastric capacity in relation to food intake in humans. Physiol. Behav. 1988;44:665–668. doi: 10.1016/0031-9384(88)90333-2.
    1. Holt S.H., Miller J.C., Petocz P., Farmakalidis E. A satiety index of common foods. Eur. J. Clin. Nutr. 1995;49:675–690.
    1. Rolls B.J., Bell E.A., Thorwart M.L. Water incorporated into a food but not served with a food decreases energy intake in lean women. Am. J. Clin. Nutr. 1999;70:448–455. doi: 10.1093/ajcn/70.4.448.
    1. Foster-Powell K., Miller J.B. International tables of glycemic index. Am. J. Clin. Nutr. 1995;62:871S–890S. doi: 10.1093/ajcn/62.4.871S.
    1. Halton T.L., Willett W.C., Liu S., Manson J.E., Stampfer M.J., Hu F.B. Potato and French fry consumption and risk of type 2 diabetes in women. Am. J. Clin. Nutr. 2006;83:284–290. doi: 10.1093/ajcn/83.2.284.
    1. Salmerón J., Manson J.E., Stampfer M.J., Colditz G.A., Wing A.L., Willett W.C. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA. 1997;277:472–477. doi: 10.1001/jama.1997.03540300040031.
    1. Barclay A.W., Petocz P., McMillan-Price J., Flood V.M., Prvan T., Mitchell P., Mitchell P., Brand-Miller J.C. Glycemic index, glycemic load, and chronic disease risk—A meta-analysis of observational studies. Am. J. Clin Nutr. 2008;87:627–637. doi: 10.1093/ajcn/87.3.627.
    1. Oba S., Nanri A., Kurotani K., Goto A., Kato M., Mizoue T., Noda M., Inoue M., Tsugane S., Japan Public Health Center-Based Prospective Study Group Dietary glycemic index, glycemic load and incidence of type 2 diabetes in Japanese men and women: The Japan public health center-based prospective study. Nutr. J. 2013;12:165. doi: 10.1186/1475-2891-12-165.
    1. Ek K.L., Wang S., Copeland L., Brand-Miller J.C. Discovery of a low-glycaemic index potato and relationship with starch digestion in vitro. Br. J. Nutr. 2014;111:699–705. doi: 10.1017/S0007114513003048.
    1. Lin Ek K., Wang S., Brand-Miller J., Copeland L. Properties of starch from potatoes differing in glycemic index. Food Funct. 2014;5:2509–2515. doi: 10.1039/C4FO00354C.
    1. Atkinson F.S., Foster-Powell K., Brand-Miller J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care. 2008;31:2281–2283. doi: 10.2337/dc08-1239.
    1. Henry C.J., Lightowler H.J., Kendall F.L., Storey M. The impact of the addition of toppings/fillings on the glycaemic response to commonly consumed carbohydrate foods. Eur. J. Clin. Nutr. 2006;60:763–769. doi: 10.1038/sj.ejcn.1602380.
    1. Hätönen K.A., Virtamo J., Eriksson J.G., Sinkko H.K. Protein and fat modify the glycaemic and insulinaemic responses to a mashed potato-based meal. Br. J. Nutr. 2011;2011 106:248–253. doi: 10.1017/S0007114511000080.
    1. von Ruesten A., Feller S., Bergmann M.M., Boeing H. Diet and risk of chronic diseases: Results from the first 8 years of follow-up in the EPIC-Potsdam study. Eur. J. Clin. Nutr. 2013;67:412–419. doi: 10.1038/ejcn.2013.7.
    1. Farhadnejad H., Teymoori F., Asghari G., Mirmiran P., Azizi F. The Association of Potato Intake with Risk for Incident Type 2 Diabetes in Adults. Can. J. Diabetes. 2018 doi: 10.1016/j.jcjd.2018.02.010.
    1. Salmerón J., Ascherio A., Rimm E.B., Colditz G.A., Spiegelman D., Jenkins D.J., Stampfer M.J., Wing A.L., Willett W.C. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care. 1997;20:545–550. doi: 10.2337/diacare.20.4.545.
    1. Melbourne Collaborative Cohort Study. [(accessed on 1 August 2018)]; Available online: .
    1. Women’s Health Study. [(accessed on 1 August 2018)]; Available online:
    1. Zheng W., Chow W.-H., Yang G., Jin F., Rothman N., Blair A., Li H.L., Wen W., Ji B.T., Li Q., et al. The Shanghai Women’s Health Study: Rationale, Study Design, and Baseline Characteristics. Am. J. Epidemiol. 2005;162:1123–1131. doi: 10.1093/aje/kwi322.
    1. EPIC Centres—GERMANY. [(accessed on 2 August 2018)]; Available online: .
    1. Hosseinpanah F., Rambod M., Reza Ghaffari H.R., Azizi F. Predicting isolated postchallenge hyperglycaemia: A new approach; Tehran Lipid and Glucose Study (TLGS) Diabet. Med. 2006;23:982–989. doi: 10.1111/j.1464-5491.2006.01939.x.
    1. Larsson S.C., Wolk A. Potato consumption and risk of cardiovascular disease: 2 prospective cohort studies. Am. J. Clin. Nutr. 2016;104:1245–1252. doi: 10.3945/ajcn.116.142422.
    1. Joshipura K.J., Ascherio A., Manson J.E., Stampfer M.J., Rimm E.B., Speizer F.E., Hennekens C.H., Spiegelman D., Willett W.C. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282:1233–1239. doi: 10.1001/jama.282.13.1233.
    1. Huang M., Zhuang P., Jiao J., Wang J., Chen X., Zhang Y. Potato consumption is prospectively associated with risk of hypertension: An 11.3-year longitudinal cohort study. Clin Nutr. 2018 doi: 10.1016/j.clnu.2018.06.973.
    1. Borgi L., Rimm E.B., Willett W.C., Forman J.P. Potato intake and incidence of hypertension: Results from three prospective US cohort studies. BMJ. 2016;353:i2351. doi: 10.1136/bmj.i2351.
    1. Hu E.A., Martínez-González M.A., Salas-Salvadó J., Corella D., Ros E., Fitó M., Garcia-Rodriguez A., Estruch R., Arós F., Fiol M., et al. Potato Consumption Does Not Increase Blood Pressure or Incident Hypertension in 2 Cohorts of Spanish Adults. J. Nutr. 2017;147:2272–2281. doi: 10.3945/jn.117.252254.
    1. Vinson J.A., Demkosky C.A., Navarre D.A., Smyda M.A. High-Antioxidant Potatoes: Acute in Vivo Antioxidant Source and Hypotensive Agent in Humans after Supplementation to Hypertensive Subjects. J. Agric. Food Chem. 2012;60:6749–6754. doi: 10.1021/jf2045262.
    1. Safar M.E. Systolic blood pressure, pulse pressure and arterial stiffness as cardiovascular risk factors. Curr. Opin. Nephrol. Hypertens. 2001;10:257–261. doi: 10.1097/00041552-200103000-00015.
    1. Tsang C., Smail N.F., Almoosawi S., McDougall G.J.M., Al-Dujaili E.A.S. Antioxidant Rich Potato Improves Arterial Stiffness in Healthy Adults. Plant Foods Hum. Nutr. 2018;73:203–208. doi: 10.1007/s11130-018-0673-2.
    1. Jennings A., Welch A.A., Fairweather-Tait S.J., Kay C., Minihane A.-M., Chowienczyk P., Jiang B., Cecelja M., Spector T., Macgregor A., et al. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am. J. Clin. Nutr. 2012;96:781–788. doi: 10.3945/ajcn.112.042036.
    1. Medina-Remón A., Zamora-Ros R., Rotchés-Ribalta M., Andres-Lacueva C., Martínez-González M.A., Covas M.I., Corella D., Salas-Salvadó J., Gómez-Gracia E., Ruiz-Gutiérrez V., et al. Total polyphenol excretion and blood pressure in subjects at high cardiovascular risk. Nutr. Metab. Cardiovasc. Dis. 2011;21:323–331. doi: 10.1016/j.numecd.2009.10.019.
    1. Aburto N.J., Hanson S., Gutierrez H., Hooper L., Elliott P., Cappuccio F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ. 2013;346:f1378. doi: 10.1136/bmj.f1378.
    1. Baldo M.P., Rodrigues S.L., Mill J.G. High salt intake as a multifaceted cardiovascular disease: New support from cellular and molecular evidence. Heart Fail. Rev. 2015;20:461–474. doi: 10.1007/s10741-015-9478-7.
    1. PREDIMED Trial. [(accessed on 16 August 2018)]; Available online: .
    1. Martínez-González M.A. The SUN cohort study (Seguimiento University of Navarra) Public Health Nutr. 2006;9:127–131. doi: 10.1079/PHN2005935.
    1. China Health and Nutrition Survey (CHNS) [(accessed on 16 August 2018)]; Available online: .

Source: PubMed

3
Sottoscrivi