The neural correlates of perceived energy levels in older adults with late-life depression

Charlene L M Lam, Ho-Ling Liu, Chih-Mao Huang, Yau-Yau Wai, Shwu-Hua Lee, Jenny Yiend, Chemin Lin, Tatia M C Lee, Charlene L M Lam, Ho-Ling Liu, Chih-Mao Huang, Yau-Yau Wai, Shwu-Hua Lee, Jenny Yiend, Chemin Lin, Tatia M C Lee

Abstract

Late-life depression is common among older adults. Although white-matter abnormality is highly implicated, the extent to which the corticospinal tract is associated with the pathophysiology of late-life depression is unclear. The current study aims to investigate the white-matter structural integrity of the corticospinal tract and determine its cognitive and functional correlates in older adults with late-life depression. Twenty-eight older adults with clinical depression and 23 healthy age-matched older adults participated in the study. The white matter volume and the white matter hyperintensities (WMHs) of the corticospinal tract, as well as the global WMHs, were measured. Psychomotor processing speed, severity of depression, perceived levels of energy and physical functioning were measured to examine the relationships among the correlates in the depressed participants. The right corticospinal tract volume was significantly higher in depressed older adults relative to healthy controls. Moreover, the right corticospinal tract volume was significantly associated with the overall severity of depression and accounted for 17% of its variance. It further attenuated the relationship between the severity of depression and perceived levels of energy. Our findings suggested that higher volume in the right corticospinal tract is implicated in LLD and may relate to lower perceived levels of energy experienced by older adults with depression.

Keywords: Corticospinal tract; Late-life depression; Processing speed; White matter; White matter hyperintensities.

Conflict of interest statement

The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a conflict of interest.

Figures

Fig. 1
Fig. 1
Location of the right corticospinal tract (Left: Sagittal view; Right: Coronal view)
Fig. 2
Fig. 2
The effect of right corticospinal tract volume on the relationship between depression severity and perceived energy level. Standardized regression coefficient of each path is reported. * p < .05; ** p < .01. c represents the regression coefficient of depression severity on perceived level before including right corticospinal tract WM volume into the equation; c’ the value after including right corticospinal tract WM volume

References

    1. Abe O, Yamasue H, Kasai K, Yamada H, Aoki S, Inoue H, et al. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Research-Neuroimaging. 2010;181(1):64–70. doi: 10.1016/j.pscychresns.2009.07.007.
    1. Alexopoulos GS. Depression in the elderly. Lancet. 2005;365(9475):1961–1970. doi: 10.1016/S0140-6736(05)66665-2.
    1. Alexopoulos GS, Meyers BS, Young RC, Campbell S, Silbersweig D, Charlson M. “Vascular depression” hypothesis. Archives of General Psychiatry. 1997;54:915–922. doi: 10.1001/archpsyc.1997.01830220033006.
    1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.
    1. Arnold JF, Zwiers MP, Fitzgerald DA, van Eijndhoven P, Becker ES, Rinck M, et al. Fronto-limbic microstructure and structural connectivity in remission from major depression. Psychiatry Research - Neuroimaging. 2012;204(1):40–48. doi: 10.1016/j.pscychresns.2012.07.010.
    1. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38(1):95–113. doi: 10.1016/j.neuroimage.2007.07.007.
    1. Ashburner J, Friston KJ. Unified segmentation. NeuroImage. 2005;26(3):839–851. doi: 10.1016/j.neuroimage.2005.02.018.
    1. Au R, Massaro JM, Wolf PA, Young ME, Beiser A, Seshadri S, et al. Association of white matter hyperintensity volume with decreased cognitive functioning: The Framingham heart study. Archives of Neurology. 2006;63:246–250. doi: 10.1001/archneur.63.2.246.
    1. Ballmaier M, Toga AW, Ph D, Blanton RE, Sowell ER, Lavretsky H, et al. Abnormalities in elderly depressed patients : An MRI-based Parcellation of the prefrontal cortex. The American Journal of Psychiatry. 2004;161(1):99–108. doi: 10.1176/appi.ajp.161.1.99.
    1. Bhalla RK, Butters MA, Mulsant BH, Begley AE, Zmuda MD, Schoderbek B, et al. Persistence of neuropsychologic deficits in the remitted state of late-life depression. The American Journal of Geriatric Psychiatry : Official Journal of the American Association for Geriatric Psychiatry. 2006;14(5):419–427. doi: 10.1097/01.JGP.0000203130.45421.69.
    1. Blazer DG. Depression in late life: Review and commentary. Journal of Gerontology. 2003;58(3):249–265.
    1. Blumenfeld, H. (2010). Neuroanatomy through clinical cases. Sunderland: Sinauer Associates.
    1. Chen, H. J., & Chen, Y. H. (2002). Wechsler Adult Intelligence Scale-III (Chinese version): Administration and scoring manual. Taipei: Chinese Behavioral Science Corporation.
    1. Chiu HFK, Lee HCB, Wing YK, Kwong PK, Leung CM, Chung DW. Reliability, validity, and structure of the Chinese geriatric depression scale in a Hong Kong context: A preliminary report. Singapore Medical Journal. 1994;35:477.
    1. De Groot M, Verhaaren BFJ, De Boer R, Klein S, Hofman A, Van Der Lugt A, et al. Changes in normal-appearing white matter precede development of white matter lesions. Stroke. 2013;44(4):1037–1042. doi: 10.1161/STROKEAHA.112.680223.
    1. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. Bmj. 2010;341:1–9. doi: 10.1136/bmj.c3666.
    1. Firbank MJ. A volumetric study of MRI signal Hyperintensities in late-life depression. American Journal of Geriatric Psychiatry. 2004;12(6):606–612. doi: 10.1097/00019442-200411000-00006.
    1. Furman DJ, Hamilton JP, Gotlib IH. Frontostriatal functional connectivity in major depressive disorder. Biology of Mood & Anxiety Disorders. 2011;1(1):11. doi: 10.1186/2045-5380-1-11.
    1. Geerlings MI, Gerritsen L. Late-life depression, hippocampal volumes, and hypothalamic-pituitary-adrenal Axis regulation: A systematic review and meta-analysis. Biological Psychiatry. 2017;82(5):339–350. doi: 10.1016/j.biopsych.2016.12.032.
    1. Gotlib IH, Joormann J, Minor KL, Hallmayer J. HPA Axis reactivity: A mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biological Psychiatry. 2008;63(9):847–851. doi: 10.1016/j.biopsych.2007.10.008.
    1. Gottfries C-G. Late life depression. European Archives of Psychiatry and Clinical Neuroscience. 2001;251(S2):57–61. doi: 10.1007/BF03035129.
    1. Gruet M, Temesi J, Rupp T, Levy P, Millet GY, Verges S. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue. Neuroscience. 2013;231(2013):384–399. doi: 10.1016/j.neuroscience.2012.10.058.
    1. Gunning-Dixon FM, Raz N. The cognitive correlates of white matter abnormalities in normal aging: A quantitative review. Neuropsychology. 2000;14(2):224–232. doi: 10.1037/0894-4105.14.2.224.
    1. Hayes, A. F. (2013). Methodology in the social sciences. Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.
    1. Heller AS, Johnstone T, Shackman AJ, Light SN, Peterson MJ, Kolden GG, et al. Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proceedings of the National Academy of Sciences. 2009;106(52):22445–22450. doi: 10.1073/pnas.0910651106.
    1. Herrmann, L. L., Le Masurier, M., & Ebmeier, K. P. (2007). White matter hyperintensities in late life depression: a systematic review. Journal of Neurology, Neurosurgery & Psychiatry, 79(6), 619–624. 10.1136/jnnp.2007.124651.
    1. Herrmann LL, Herrmann LL, Le Masurier M, Le Masurier M, Ebmeier KP, Ebmeier KP, et al. White matter hyperintensities in late life depression: A systematic review. Journal of Neurology, Neurosurgery & Psychiatry. 2008;79(6):619–624. doi: 10.1136/jnnp.2007.124651.
    1. Jang SH, Seo JP. Aging of corticospinal tract fibers according to the cerebral origin in the human brain: A diffusion tensor imaging study. Neuroscience Letters. 2015;585:77–81. doi: 10.1016/j.neulet.2014.11.030.
    1. Köhler S, Thomas AJ, Lloyd A, Barber R, Almeida OP, O’Brien JT. White matter hyperintensities, cortisol levels, brain atrophy and continuing cognitive deficits in late-life depression. The British Journal of Psychiatry : The Journal of Mental Science. 2010;196(2):143–149. doi: 10.1192/bjp.bp.109.071399.
    1. Lam CLK, Gandek B, Ren XS, Chan MS. Tests of scaling assumptions and construct validity of the Chinese (HK) version of the SF-36 health survey. Journal of Clinical Epidemiology. 1998;51(11):1139–1147. doi: 10.1016/S0895-4356(98)00105-X.
    1. Lee JS, Potter GG, Wagner HR, Welsh-Bohmer KA, Steffens DC. Persistent mild cognitive impairment in geriatric depression. International Psychogeriatrics / IPA. 2007;19:125. doi: 10.1017/S1041610206003607.
    1. Lee HY, Tae WS, Yoon HK, Lee BT, Paik JW, Son KR, et al. Demonstration of decreased gray matter concentration in the midbrain encompassing the dorsal raphe nucleus and the limbic subcortical regions in major depressive disorder: An optimized voxel-based morphometry study. Journal of Affective Disorders. 2011;133(1–2):128–136. doi: 10.1016/j.jad.2011.04.006.
    1. Luppa M, Sikorski C, Luck T, Ehreke L, Konnopka A, Wiese B, et al. Age- and gender-specific prevalence of depression in latest-life - systematic review and meta-analysis. Journal of Affective Disorders. 2012;136(3):212–221. doi: 10.1016/j.jad.2010.11.033.
    1. Magistro D, Takeuchi H, Nejad KK, Taki Y, Sekiguchi A, Nouchi R, et al. The relationship between processing speed and regional white matter volume in healthy young people. PLoS One. 2015;10(9):1–17. doi: 10.1371/journal.pone.0136386.
    1. Marchand WR, Yurgelun-Todd D. Striatal structure and function in mood disorders: A comprehensive review. Bipolar Disorders. 2010;12(8):764–785. doi: 10.1111/j.1399-5618.2010.00874.x.
    1. Mettenburg JM, Benzinger TL, Shimony JS, Snyder AZ, Sheline YI. Diminished performance on neuropsychological testing in late life depression is correlated with microstructural white matter abnormalities. NeuroImage. 2012;60(4):2182–2190. doi: 10.1016/j.neuroimage.2012.02.044.
    1. Pariante CM, Lightman SL. The HPA axis in major depression: Classical theories and new developments. Trends in Neurosciences. 2008;31(9):464–468. doi: 10.1016/j.tins.2008.06.006.
    1. Parker G, Roy K, Hadzi-Pavlovic D, Wilhelm K, Mitchell P. The differential impact of age on the phenomenology of melancholia. Psychological Medicine. 2001;31(7):1231–1236. doi: 10.1017/S0033291701004603.
    1. Penke L, Maniega SM, Murray C, Gow AJ, Valdes Hernandez MC, Clayden JD, et al. A general factor of brain white matter integrity predicts information processing speed in healthy older people. The Journal of Neuroscience. 2010;30(22):7569–7574. doi: 10.1523/JNEUROSCI.1553-10.2010.
    1. Sacchet MD, Prasad G, Foland-Ross LC, Joshi SH, Hamilton JP, Thompson PM, Gotlib IH. Characterizing white matter connectivity in major depressive disorder: Automated Fiber quantification and maximum density paths. Proceedings/IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE International Symposium on Biomedical Imaging. 2014;11:592–595.
    1. Sacchet MD, Prasad G, Foland-Ross LC, Joshi SH, Hamilton JP, Thompson PM, Gotlib IH. Structural abnormality of the corticospinal tract in major depressive disorder. Biology of Mood & Anxiety Disorders. 2014;4(1):8. doi: 10.1186/2045-5380-4-8.
    1. Sackeim HA. The definition and meaning of treatment-resistant depression. The Journal of Clinical Psychiatry. 2001;62(suppl 16):10–17.
    1. Sheline YI, Barch DM, Garcia K, Gersing K, Pieper C, Welsh-Bohmer K, et al. Cognitive function in late life depression: Relationships to depression severity, cerebrovascular risk factors and processing speed. Biological Psychiatry. 2006;60(1):58–65. doi: 10.1016/j.biopsych.2005.09.019.
    1. Smagula SF, Aizenstein HJ. Brain structural connectivity in late-life major depressive disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2016;1(3):271–277.
    1. Song YJC, Korgaonkar MS, Armstrong LV, Eagles S, Williams LM, Grieve SM. Tractography of the brainstem in major depressive disorder using diffusion tensor imaging. PLoS One. 2014;9(1):1–6.
    1. Soriano-Mas C, Hernndez-Ribas R, Pujol J, Urretavizcaya M, Deus J, Harrison BJ, et al. Cross-sectional and longitudinal assessment of structural brain alterations in melancholic depression. Biological Psychiatry. 2011;69(4):318–325. doi: 10.1016/j.biopsych.2010.07.029.
    1. Tadayonnejad R, Ajilore O. Brain network dysfunction in late-life depression: A literature review. Journal of Geriatric Psychiatry and Neurology. 2014;27(1):5–12. doi: 10.1177/0891988713516539.
    1. Tham MW, Woon PS, Sum MY, Lee TS, Sim K. White matter abnormalities in major depression: Evidence from post-mortem, neuroimaging and genetic studies. Journal of Affective Disorders. 2011;132(1–2):26–36. doi: 10.1016/j.jad.2010.09.013.
    1. Van Den Heuvel DMJ, Ten Dam VH, De Craen AJM, Admiraal-Behloul F, Olofsen H, Bollen ELEM, et al. Increase in periventricular white matter hyperintensities parallels decline in mental processing speed in a non-demented elderly population. Journal of Neurology, Neurosurgery and Psychiatry. 2006;77(2):149–153. doi: 10.1136/jnnp.2005.070193.
    1. Wong MTP, Ho TP, Ho MY, Yu CS, Wong YH, Lee SY. Development and inter-rater reliability of a standardized verbal instruction manual for the Chinese geriatric depression scale-short form. International Journal of Geriatric Psychiatry. 2002;17(5):459–463. doi: 10.1002/gps.633.
    1. Wong NML, Liu H-L, Lin C, Huang C-M, Wai Y-Y, Lee S-H, Lee TMC. Loneliness in late-life depression: Structural and functional connectivity during affective processing. Psychological Medicine. 2016;46(12):2485–2499. doi: 10.1017/S0033291716001033.
    1. Wu M, Rosano C, Butters M, Whyte E, Nable M, Crooks R, et al. A fully automated method for quantifying and localizing white matter hyperintensities on MR images. Psychiatry Research-Neuroimaging. 2006;148(2–3):133–142. doi: 10.1016/j.pscychresns.2006.09.003.
    1. Yoo, T. S. (2004). Insight into images: Principles and practice for segmentation, registration, and image analysis. New York: AK Peters/CRC Press.

Source: PubMed

3
Sottoscrivi