Lipoprotein turnover and possible remnant accumulation in preeclampsia: insights from the Freiburg Preeclampsia H.E.L.P.-apheresis study

Christine Contini, Martin Jansen, Brigitte König, Filiz Markfeld-Erol, Mirjam Kunze, Stefan Zschiedrich, Ulrich Massing, Irmgard Merfort, Heinrich Prömpeler, Ulrich Pecks, Karl Winkler, Gerhard Pütz, Christine Contini, Martin Jansen, Brigitte König, Filiz Markfeld-Erol, Mirjam Kunze, Stefan Zschiedrich, Ulrich Massing, Irmgard Merfort, Heinrich Prömpeler, Ulrich Pecks, Karl Winkler, Gerhard Pütz

Abstract

Background: Preeclampsia is a life-threatening disease in pregnancy, and its complex pathomechanisms are poorly understood. In preeclampsia, lipid metabolism is substantially altered. In late onset preeclampsia, remnant removal disease like lipoprotein profiles have been observed. Lipid apheresis is currently being explored as a possible therapeutic approach to prolong preeclamptic pregnancies. Here, apheresis-induced changes in serum lipid parameters are analyzed in detail and their implications for preeclamptic lipid metabolism are discussed.

Methods: In the Freiburg H.E.L.P.-Apheresis Study, 6 early onset preeclamptic patients underwent repeated apheresis treatments. Serum lipids pre- and post-apheresis and during lipid rebound were analyzed in depth via ultracentrifugation to yield lipoprotein subclasses.

Results: The net elimination of Apolipoprotein B and plasma lipids was lower than theoretically expected. Lipids returned to previous pre-apheresis levels before the next apheresis even though apheresis was repeated within 2.9 ± 1.2 days. Apparent fractional catabolic rates and synthetic rates were substantially elevated, with fractional catabolic rates for Apolipoprotein B / LDL-cholesterol being 0.7 ± 0.3 / 0.4 ± 0.2 [day- 1] and synthetic rates being 26 ± 8 / 17 ± 8 [mg*kg- 1*day- 1]. The distribution of LDL-subclasses after apheresis shifted to larger buoyant LDL, while intermediate-density lipoprotein-levels remained unaffected, supporting the notion of an underlying remnant removal disorder in preeclampsia.

Conclusion: Lipid metabolism seems to be highly accelerated in preeclampsia, likely outbalancing remnant removal mechanisms. Since cholesterol-rich lipoprotein remnants are able to accumulate in the vessel wall, remnant lipoproteins may contribute to the severe endothelial dysfunction observed in preeclampsia.

Trial registration: ClinicalTrails.gov, NCT01967355 .

Keywords: Apheresis; Hypertension in pregnancy; Lipoprotein removal; Preeclampsia; Remnant lipoproteins.

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the local ethics committee at the Medical Center - University of Freiburg, (local ethics committee number: 475/12; ClinicalTrails.gov: NCT01967355), and all patients gave informed written consent.

Consent for publication

Not applicable.

Competing interests

KW was supported by a grant for another trial regarding apheresis by B. Braun. The authors have no other conflicts of interest to declare.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Serum lipid levels before and after apheresis. Samples were taken immediately before and after apheresis treatments (in total n = 23 treatments). Values before and after apheresis are given as median and interquartile range and tested with Wilcoxon matched pairs test
Fig. 2
Fig. 2
Rebound of lipid levels after apheresis treatments in the six PE patients. Lipid levels before the first apheresis were set as 100%, all other lipid values are given in % relative to this value. A: apheresis treatment, D: delivery. Closed circles: LDL-cholesterol; open rectangles: total cholesterol; open triangles: ApoB
Fig. 3
Fig. 3
Rebound of LDL-cholesterol. a: LDL-cholesterol measurements after H.E.L.P.-apheresis for all apheresis treatments in this study until day 5 (red open circles). Values before apheresis were set to 100% and all other values are given in % relative to this value, starting with the first value immediately after apheresis. The red line depicts a monoexponential fit of all data (r = 0.55), the black dotted line gives the 95% CI of the computed graph. b: Rebound of LDL-cholesterol after H.E.L.P.-apheresis, literature data (mean and s.d.). Blue open squares: 6 otherwise healthy subjects presenting isolated high Lp(a) levels [31]; magenta circles 4 healthy subjects, 75% of plasma volume treated; magenta triangles, 4 healthy subjects, 125% plasma volume treated [49]
Fig. 4
Fig. 4
Lipoprotein profile before and after apheresis. Lipoproteins pre and post apheresis were separated into their density classes and LDL were divided into 6 subclasses by further ultracentrifugation. Density increases from left to right (see methods for details). a: Measured ApoB values (mean ± SD of 6 patients) are given as closed symbols (measured pre-apheresis values: closed triangles; measured post-apheresis levels: closed squares). Expected post apheresis values calculated by apheresis efficiency are given in open red circles. b: Comparison of measured and calculated post-apheresis levels by Wilcoxon matched pairs test, a value of p < 0.05 was considered statistically significant
Fig. 5
Fig. 5
Cholesterol distribution in LDL-subfractions after H.E.L.P. apheresis in PE patients (a) compared with data derived from literature [33] (b). Cholesterol in the different subclasses is given in % as mean ± SD of total LDL-Cholesterol (set as 100%). *p < 0.05 with Holm-Sidak-Test. (Note, that the density ranges of individual subclasses are not identical in Fig. 5a and b)

References

    1. Tranquilli AL, Dekker G, Magee L, Roberts J, Sibai BM, Steyn W, et al. The classification, diagnosis and management of the hypertensive disorders of pregnancy: a revised statement from the ISSHP. Pregnancy Hypertens Int J Womens Cardiovasc Health. 2014;4:97–104.
    1. von Dadelszen P, Magee LA. Pre-eclampsia: an update. Curr Hypertens Rep. 2014;16:454. doi: 10.1007/s11906-014-0454-8.
    1. Steegers EAP, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376:631–644. doi: 10.1016/S0140-6736(10)60279-6.
    1. Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol. 2010;5:173–192. doi: 10.1146/annurev-pathol-121808-102149.
    1. Basso O, Rasmussen S, Weinberg CR, Wilcox AJ, Irgens LM, Skjaerven R. Trends in fetal and infant survival following preeclampsia. JAMA. 2006;296:1357–1362. doi: 10.1001/jama.296.11.1357.
    1. Das UN. Angiogenic, antiangiogenic molecules, and bioactive lipids in preeclampsia. Am J Hypertens. 2017;30:864–870. doi: 10.1093/ajh/hpx120.
    1. Shah DA, Khalil RA. Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochem Pharmacol Elsevier Inc. 2015;95:211–226. doi: 10.1016/j.bcp.2015.04.012.
    1. Alvarez JJ, Montelongo A, Iglesias A, Lasunción MA, Herrera E. Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J Lipid Res. 1996;37:299–308.
    1. Basaran A. Pregnancy-induced hyperlipoproteinemia: review of the literature. Reprod Sci. 2009;16:431–437. doi: 10.1177/1933719108330569.
    1. Winkler K, Wetzka B, Hoffmann MM, Friedrich I, Kinner M, Baumstark MW, et al. Low density lipoprotein (LDL) subfractions during pregnancy: accumulation of buoyant LDL with advancing gestation. J Clin Endocrinol Metab. 2000;85:4543–4550. doi: 10.1210/jcem.85.12.7027.
    1. Gallos ID, Sivakumar K, Kilby MD, Coomarasamy A, Thangaratinam S, Vatish M. Pre-eclampsia is associated with, and preceded by, hypertriglyceridaemia: a meta-analysis. BJOG Int J Obstet Gynaecol. 2013;120:1321–1332. doi: 10.1111/1471-0528.12375.
    1. Spracklen CN, Smith CJ, Saftlas AF, Robinson JG, Ryckman KK. Maternal hyperlipidemia and the risk of preeclampsia: a meta-analysis. Am J Epidemiol. 2014;180:346–358. doi: 10.1093/aje/kwu145.
    1. Winkler K, Wetzka B, Hoffmann MM, Friedrich I, Kinner M, Baumstark MW, et al. Triglyceride-rich lipoproteins are associated with hypertension in preeclampsia. J Clin Endocrinol Metab. 2003;88:1162–1166. doi: 10.1210/jc.2002-021160.
    1. Ray JG, Diamond P, Singh G, Bell CM. Brief overview of maternal triglycerides as a risk factor for pre-eclampsia. BJOG Int J Obstet Gynaecol. 2006;113:379–386. doi: 10.1111/j.1471-0528.2006.00889.x.
    1. Thadhani R, Kisner T, Hagmann H, Bossung V, Noack S, Schaarschmidt W, et al. Pilot study of extracorporeal removal of soluble Fms-like tyrosine kinase 1 in preeclampsia. Circulation. 2011;124:940–950. doi: 10.1161/CIRCULATIONAHA.111.034793.
    1. Thadhani R, Hagmann H, Schaarschmidt W, Roth B, Cingoez T, Karumanchi SA, et al. Removal of soluble Fms-like tyrosine Kinase-1 by dextran sulfate apheresis in preeclampsia. J Am Soc Nephrol. 2016;27(3):903–13. doi: 10.1681/ASN.2015020157.
    1. Wang Y, Walli AK, Schulze A, Blessing F, Fraunberger P, Thaler C, et al. Heparin-mediated extracorporeal low density lipoprotein precipitation as a possible therapeutic approach in preeclampsia. Transfus Apher Sci. 2006;35:103–110. doi: 10.1016/j.transci.2006.05.010.
    1. Winkler K, Contini C, König B, Krumrey B, Pütz G, Zschiedrich S, et al. Treatment of very preterm preeclampsia via heparin-mediated extracorporeal LDLprecipitation (H.E.L.P.) apheresis: the Freiburg preeclampsia H.E.L.P.-apheresis study. Pregnancy Hypertens Int J Womens Cardiovasc Health. in review
    1. Bambauer R, Bambauer C, Lehmann B, Latza R, Schiel R. LDL-apheresis: technical and clinical aspects. Sci World J. 2012;2012:314283. doi: 10.1100/2012/314283.
    1. Koren E, Armstrong VW, Mueller G, Wilson PR, Schuff-Werner P, Thiery J, et al. Apolipoprotein A-I and apolipoprotein B containing lipoprotein particles in coronary patients treated with extracorporal low density lipoprotein precipitation (HELP) Atherosclerosis. 1992;95:157–170. doi: 10.1016/0021-9150(92)90019-D.
    1. Lane DM, Alaupovic P, Knight-Gibson C, Dudley VS, Laughlin LO. Changes in plasma lipid and apolipoprotein levels between heparin-induced extracorporeal low-density lipoprotein precipitation (HELP) treatments. Am J Cardiol. 1995;75:1124–1129. doi: 10.1016/S0002-9149(99)80743-7.
    1. Parhofer KG, Geiss HC, Schwandt P. Efficacy of different low-density lipoprotein apheresis methods. Ther Apher. 2000;4:382–385. doi: 10.1046/j.1526-0968.2000.004005382.x.
    1. Winkler K, Hoffmann MM, Pütz G. Letter by Winkler et al regarding article, “pilot study of extracorporeal removal of soluble Fms-like tyrosine kinase 1 in preeclampsia.”. Circulation. 2012;125:1161–1162. doi: 10.1161/CIRCULATIONAHA.111.060954.
    1. Apstein CS, Zilversmit DB, Lees RS, George PK. Effect of intensive plasmapheresis on the plasma cholesterol concentration with familial hypercholesterolemia. Atherosclerosis. 1978;31:105–115. doi: 10.1016/0021-9150(78)90157-0.
    1. Eisenhauer T, Armstrong VW, Wieland H, Fuchs C, Scheler F, Seidel D. Selective removal of low density lipoproteins (LDL) by precipitation at low pH: first clinical application of the HELP system. Klin Wochenschr. 1987;65:161–168. doi: 10.1007/BF01728226.
    1. Baumstark MW, Kreutz W, Berg A, Frey I, Keul J. Structure of human low-density lipoprotein subfractions, determined by X-ray small-angle scattering. Biochim Biophys Acta. 1990;1037:48–57. doi: 10.1016/0167-4838(90)90100-T.
    1. Sprenger KB, Huber K, Kratz W, Henze E. Nomograms for the prediction of patient’s plasma volume in plasma exchange therapy from height, weight, and hematocrit. J Clin Apheresis. 1987;3:185–190. doi: 10.1002/jca.2920030313.
    1. Parhofer KG, Barrett PHR, Schwandt P. Low density lipoprotein apolipoprotein B metabolism: comparison of two methods to establish kinetic parameters. Atherosclerosis. 1999;144:159–166. doi: 10.1016/S0021-9150(99)00050-7.
    1. Ross MG, Idah R. Correlation of maternal plasma volume and composition with amniotic fluid index in normal human pregnancy. J Matern Fetal Neonatal Med. 2004;15:104–108. doi: 10.1080/14767050310001650770.
    1. de Haas S, Ghossein-Doha C, van Kuijk SM, van Drongelen J, Spaanderman ME. Physiologic adaptation of plasma volume during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;49(2):177–87. doi: 10.1002/uog.17360.
    1. Rau M. Lipoprotein(a) - Betrachtungen zur Kinetik des Wiederanstiegs der Lp(a)-Plasmaspiegel nach Reduktion durch einmalige HELP-Behandlung. Freiburg: Universität Freiburg; 1996.
    1. Pfohl M, Naoumova RP, Neuwirth C, Sussekov A, Smykowski J, Rendell NB, et al. Upregulation of cholesterol synthesis after acute reduction of low density lipoprotein by apheresis in normocholesterolaemic subjects: evidence for a threshold effect. Atherosclerosis. 1997;135:257–262. doi: 10.1016/S0021-9150(97)00173-1.
    1. Schamberger BM, Geiss HC, Ritter MM, Schwandt P, Parhofer KG. Influence of LDL apheresis on LDL subtypes in patients with coronary heart disease and severe hyperlipoproteinemia. J Lipid Res. 2000;41:727–733.
    1. Armstrong VW, Schleef J, Thiery J, Muche R, Schuff-Werner P, Eisenhauer T, et al. Effect of HELP-LDL-apheresis on serum concentrations of human lipoprotein(a): kinetic analysis of the post-treatment return to baseline levels. Eur J Clin Investig. 1989;19:235–240. doi: 10.1111/j.1365-2362.1989.tb00223.x.
    1. Ertorer ME, Guvenc B, Haydardedeoglu B, Tekinturhan F. A case report of the cascade filtration system: a safe and effective method for low-density lipoprotein apheresis during pregnancy. Ther Apher Dial. 2008;12:396–400. doi: 10.1111/j.1744-9987.2008.00616.x.
    1. Blaha M, Lanska M, Blaha V, Boudys L, Zak P. Pregnancy in homozygous familial hypercholesterolemia – importance of LDL-apheresis. Atheroscler Suppl. 2015;18:134–139. doi: 10.1016/j.atherosclerosissup.2015.02.024.
    1. Gaffney D, Forster L, Caslake MJ, Bedford D, Stewart JP, Stewart G, et al. Comparison of apolipoprotein B metabolism in familial defective apolipoprotein B and heterogeneous familial hypercholesterolemia. Atherosclerosis. 2002;162:33–43. doi: 10.1016/S0021-9150(01)00679-7.
    1. Tremblay AJ. Increased production of VLDL apoB-100 in subjects with familial hypercholesterolemia carrying the same null LDL receptor gene mutation. J Lipid Res. 2004;45:866–872. doi: 10.1194/jlr.M300448-JLR200.
    1. Nakajima K, Tokita Y, Sakamaki K, Shimomura Y, Kobayashi J, Kamachi K, et al. Triglyceride content in remnant lipoproteins is significantly increased after food intake and is associated with plasma lipoprotein lipase. Clin Chim Acta. 2017;465:45–52. doi: 10.1016/j.cca.2016.12.011.
    1. Parhofer KG, Barrett PH, Demant T, Schwandt P. Acute effects of low density lipoprotein apheresis on metabolic parameters of apolipoprotein B. J Lipid Res. 2000;41:1596–1603.
    1. Kostner G, Scharnagl H, Kostner K, März W. Zusammensetzung und Stoffwechsel der Lipoproteine. In: Schwandt P, Parhofer KG, editors. Handb Fettstoffwechselstörungen. Stuttgart: Schattauer; 2007. pp. 1–65.
    1. Campos H, Dreon DM, Krauss RM. Associations of hepatic and lipoprotein lipase activities with changes in dietary composition and low density lipoprotein subclasses. J Lipid Res. 1995;36:462–472.
    1. Zambon A, Austin MA, Brown BG, Hokanson JE, Brunzell JD. Effect of hepatic lipase on LDL in normal men and those with coronary artery disease. Arterioscler Thromb. 1993;13:147–153. doi: 10.1161/01.ATV.13.2.147.
    1. Richter WO, Donner MG, Schwandt P. Short- and long-term effects on serum lipoproteins by three different techniques of apheresis. Artif Organs. 1996;20:311–317. doi: 10.1111/j.1525-1594.1996.tb04450.x.
    1. Basu A, Alaupovic P, Wu M, Jenkins AJ, Yu Y, Nankervis AJ, et al. Plasma lipoproteins and preeclampsia in women with type 1 diabetes: a prospective study. J Clin Endocrinol Metab. 2012;97:1752–1762. doi: 10.1210/jc.2011-3255.
    1. Adiels M, Matikainen N, Westerbacka J, Söderlund S, Larsson T, Olofsson S-O, et al. Postprandial accumulation of chylomicrons and chylomicron remnants is determined by the clearance capacity. Atherosclerosis. 2012;222:222–228. doi: 10.1016/j.atherosclerosis.2012.02.001.
    1. Dallinga-Thie GM, Kroon J, Borén J, Chapman MJ. Triglyceride-rich lipoproteins and remnants: targets for therapy? Curr Cardiol Rep. 2016;18:67. doi: 10.1007/s11886-016-0745-6.
    1. Borén J, Matikainen N, Adiels M, Taskinen M-R. Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta. 2014;431:131–142. doi: 10.1016/j.cca.2014.01.015.
    1. Pfohl M, Naoumova RP, Klass C, Knisel W, Jakober B, Risler T, et al. Acute and chronic effects on cholesterol biosynthesis of LDL-apheresis with or without concomitant HMG-CoA reductase inhibitor therapy. J Lipid Res. 1994;35:1946–1955.
    1. Bernstein IM, Damron D, Schonberg AL, Sallam RM, Shapiro R. The relationship of plasma volume, sympathetic tone, and proinflammatory cytokines in young healthy nonpregnant women. [erratum appears in Reprod Sci. 2014 Apr;21(4):543 note: Sallam, Reem M [added]] Reprod Sci. 2009;16:980–985. doi: 10.1177/1933719109338876.

Source: PubMed

3
Sottoscrivi