A randomized controlled trial comparing the effects of dapagliflozin and DPP-4 inhibitors on glucose variability and metabolic parameters in patients with type 2 diabetes mellitus on insulin

Hiroshi Nomoto, Hideaki Miyoshi, Hajime Sugawara, Kota Ono, Shingo Yanagiya, Mayuko Oita, Akinobu Nakamura, Tatsuya Atsumi, Hiroshi Nomoto, Hideaki Miyoshi, Hajime Sugawara, Kota Ono, Shingo Yanagiya, Mayuko Oita, Akinobu Nakamura, Tatsuya Atsumi

Abstract

Background: Dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium-glucose co-transporter 2 (SGLT2) inhibitors improve hyperglycemia, and the usefulness of co-administration of DPP-4 inhibitors and insulin therapy has been well established. However, it has been still uncertain whether combination therapy of SGLT2 inhibitors and insulin is superior to that of DPP-4 inhibitors and the latter. Therefore, we investigated the superiority of dapagliflozin on glucose fluctuation compared with DPP-4 inhibitors in patients with type 2 diabetes mellitus (T2DM) on insulin using a continuous glucose monitoring (CGM) system.

Methods: In this prospective, randomized, open-label controlled trial, 36 patients with T2DM and treated with DPP-4 inhibitors and insulin therapy, were enrolled and allocated into two groups. The patients either switched their DPP-4 inhibitors to dapagliflozin 5 mg for 12 weeks, or continued their DPP-4 inhibitors for the same period. CGM analyses and metabolic markers were assessed before and after treatment periods.

Results: In total, data from 29 patients were analyzed. There were no significant differences in the mean amplitude of glycemic excursions and other CGM profiles in either group after treatment. Within the dapagliflozin treatment group, significant reductions of body mass index and albuminuria, and increases of HbA1c, hemoglobin and hematocrit were observed, but improvement of albuminuria was not significant if compared with the DPP-4 continuation group.

Conclusions: Combination therapy of dapagliflozin and insulin was not superior in glucose fluctuation to DPP-4 inhibitors on insulin. However, dapagliflozin may in part provide favorable effects on metabolism in patients with T2DM treated with insulin therapy. Trial registration UMIN-CTR: UMIN000015033. Registered 2 September 2014.

Keywords: Blood glucose fluctuation; Dipeptidyl peptidase-4 inhibitors; Sodium–glucose co-transporter 2 inhibitors; Type 2 diabetes mellitus.

Figures

Fig. 1
Fig. 1
Average glucose profiles during treatment with dapagliflozin and DPP-4 inhibitors. The black solid line and grey solid lines show the mean and SD at baseline, respectively. The black dotted line and grey dotted lines show the mean and SD at the end of the study, respectively
Fig. 2
Fig. 2
Comparison of individual changes in MAGE for each drug between the study baseline and endpoint. White circles and lines are mean and SD, respectively

References

    1. Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–2222. doi: 10.1016/S0140-6736(10)60484-9.
    1. Gregg EW, Li Y, Wang J, et al. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. 2014;370:1514–1523. doi: 10.1056/NEJMoa1310799.
    1. Lind M, Garcia-Rodriguez LA, Booth GL, et al. Mortality trends in patients with and without diabetes in Ontario, Canada and the UK from 1996 to 2009: a population-based study. Diabetologia. 2013;56:2601–2608. doi: 10.1007/s00125-013-3063-1.
    1. Risso A, Mercuri F, Quagliaro L, et al. Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab. 2001;281:E924–E930.
    1. Fathi R, Haluska B, Isbel N, et al. The relative importance of vascular structure and function in predicting cardiovascular events. J Am Coll Cardiol. 2004;43:616–623. doi: 10.1016/j.jacc.2003.09.042.
    1. Su G, Mi SH, Li Z, et al. Prognostic value of early in-hospital glycemic excursion in elderly patients with acute myocardial infarction. Cardiovasc Diabetol. 2013;12:33. doi: 10.1186/1475-2840-12-33.
    1. Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295:1681–1687. doi: 10.1001/jama.295.14.1681.
    1. Ahren B, Schmitz O. GLP-1 receptor agonists and DPP-4 inhibitors in the treatment of type 2 diabetes. Horm Metab Res. 2004;36:867–876. doi: 10.1055/s-2004-826178.
    1. Hong ES, Khang AR, Yoon JW, et al. Comparison between sitagliptin as add-on therapy to insulin and insulin dose-increase therapy in uncontrolled Korean type 2 diabetes: CSI study. Diabetes Obes Metab. 2012;14:795–802. doi: 10.1111/j.1463-1326.2012.01600.x.
    1. Takahara M, Shiraiwa T, Kaneto H, et al. Efficacy of sitagliptin on blood glucose fluctuation in Japanese type 2 diabetic patients with basal-supported oral therapy. Endocr J. 2012;59:1131–1136. doi: 10.1507/endocrj.EJ12-0220.
    1. Wu JH, Foote C, Blomster J, et al. Effects of sodium–glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2016;4:411–419. doi: 10.1016/S2213-8587(16)00052-8.
    1. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017
    1. Service FJ, Molnar GD, Rosevear JW, et al. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes. 1970;19:644–655. doi: 10.2337/diab.19.9.644.
    1. Haneda M, Utsunomiya K, Koya D, et al. A new classification of diabetic nephropathy 2014: a report from joint committee on diabetic nephropathy. J Diabetes Investig. 2015;6:242–246. doi: 10.1111/jdi.12319.
    1. Henry RR, Rosenstock J, Edelman S, et al. Exploring the potential of the SGLT2 inhibitor dapagliflozin in type 1 diabetes: a randomized, double-blind, placebo-controlled pilot study. Diabetes Care. 2015;38:412–419. doi: 10.2337/dc13-2955.
    1. Ceriello A, Esposito K, Piconi L, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57:1349–1354. doi: 10.2337/db08-0063.
    1. Hu Y, Liu W, Huang R, et al. Postchallenge plasma glucose excursions, carotid intima-media thickness, and risk factors for atherosclerosis in Chinese population with type 2 diabetes. Atherosclerosis. 2010;210:302–306. doi: 10.1016/j.atherosclerosis.2009.11.015.
    1. Mita T, Katakami N, Shiraiwa T, et al. Sitagliptin attenuates the progression of carotid intima-media thickening in insulin-treated patients with type 2 diabetes: the sitagliptin preventive study of intima-media thickness evaluation (SPIKE): a randomized controlled trial. Diabetes Care. 2016;39:455–464. doi: 10.2337/dc15-2145.
    1. Esposito K, Giugliano D, Nappo F, et al. Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation. 2004;110:214–219. doi: 10.1161/01.CIR.0000134501.57864.66.
    1. Nauck MA, Kleine N, Orskov C, et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1993;36:741–744. doi: 10.1007/BF00401145.
    1. Christensen M, Vedtofte L, Holst JJ, et al. Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes. 2011;60:3103–3109. doi: 10.2337/db11-0979.
    1. Park SE, Lee BW, Kim JH, et al. Effect of gemigliptin on glycaemic variability in patients with type 2 diabetes (STABLE study) Diabetes Obes Metab. 2017;19:892–896. doi: 10.1111/dom.12869.
    1. Chen C, Yu Q, Zhang S, et al. Assessing the efficacy and safety of combined DPP-4 inhibitor and insulin treatment in patients with type 2 diabetes: a meta-analysis. Int J Clin Exp Pathol. 2015;8:14141–14150.
    1. Ferrannini E, Veltkamp SA, Smulders RA, et al. Renal glucose handling: impact of chronic kidney disease and sodium–glucose cotransporter 2 inhibition in patients with type 2 diabetes. Diabetes Care. 2013;36:1260–1265. doi: 10.2337/dc12-1503.
    1. Rieg T, Masuda T, Gerasimova M, et al. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol. 2014;306:F188–F193. doi: 10.1152/ajprenal.00518.2013.
    1. Merovci A, Solis-Herrera C, Daniele G, et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Investig. 2014;124:509–514. doi: 10.1172/JCI70704.
    1. Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium–glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Investig. 2014;124:499–508. doi: 10.1172/JCI72227.
    1. Nishimura R, Osonoi T, Kanada S, et al. Effects of luseogliflozin, a sodium–glucose co-transporter 2 inhibitor, on 24-h glucose variability assessed by continuous glucose monitoring in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled, crossover study. Diabetes Obes Metab. 2015;17:800–804. doi: 10.1111/dom.12481.
    1. Okajima F, Nagamine T, Nakamura Y, et al. Preventive effect of ipragliflozin on nocturnal hypoglycemia in patients with type 2 diabetes treated with basal-bolus insulin therapy: An open-label, single-center, parallel, randomized control study. J Diabetes Investig. 2017;8:341–345. doi: 10.1111/jdi.12588.
    1. Chen M, Liu Y, Jin J, et al. The efficacy and safety of dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus patients with severe renal impairment: a meta-analysis. Ren Fail. 2016;38:581–587. doi: 10.3109/0886022X.2016.1149682.
    1. Jinnouchi H, Nozaki K, Watase H, et al. Impact of reduced renal function on the glucose-lowering effects of luseogliflozin, a selective SGLT2 inhibitor, assessed by continuous glucose monitoring in japanese patients with type 2 diabetes mellitus. Adv Ther. 2016;33:460–479. doi: 10.1007/s12325-016-0291-z.
    1. Fujita H, Morii T, Fujishima H, et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int. 2014;85:579–589. doi: 10.1038/ki.2013.427.
    1. Groop PH, Cooper ME, Perkovic V, et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care. 2013;36:3460–3468. doi: 10.2337/dc13-0323.
    1. Thomson SC, Rieg T, Miracle C, et al. Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Regul Integr Comp Physiol. 2012;302:R75–R83. doi: 10.1152/ajpregu.00357.2011.
    1. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–334. doi: 10.1056/NEJMoa1515920.
    1. Lambers Heerspink HJ, de Zeeuw D, Wie L, et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15:853–862. doi: 10.1111/dom.12127.
    1. Sano M, Takei M, Shiraishi Y, et al. Increased hematocrit during sodium–glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys. J Clin Med Res. 2016;8:844–847. doi: 10.14740/jocmr2760w.
    1. Yamamoto C, Miyoshi H, Ono K, et al. Ipragliflozin effectively reduced visceral fat in Japanese patients with type 2 diabetes under adequate diet therapy. Endocr J. 2016;63:589–596. doi: 10.1507/endocrj.EJ15-0749.
    1. Tang H, Cui W, Li D, et al. Sodium–glucose co-transporter 2 inhibitors in addition to insulin therapy for management of type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2017;19:142–147. doi: 10.1111/dom.12785.

Source: PubMed

3
Sottoscrivi