Nanophthalmos: A Review of the Clinical Spectrum and Genetics

Pedro C Carricondo, Thais Andrade, Lev Prasov, Bernadete M Ayres, Sayoko E Moroi, Pedro C Carricondo, Thais Andrade, Lev Prasov, Bernadete M Ayres, Sayoko E Moroi

Abstract

Nanophthalmos is a clinical spectrum of disorders with a phenotypically small but structurally normal eye. These disorders present significant clinical challenges to ophthalmologists due to a high rate of secondary angle-closure glaucoma, spontaneous choroidal effusions, and perioperative complications with cataract and retinal surgeries. Nanophthalmos may present as a sporadic or familial disorder, with autosomal-dominant or recessive inheritance. To date, five genes (i.e., MFRP, TMEM98, PRSS56, BEST1, and CRB1) and two loci have been implicated in familial forms of nanophthalmos. Here, we review the definition of nanophthalmos, the clinical and pathogenic features of the condition, and the genetics of this disorder.

Figures

Figure 1
Figure 1
Typical ultrasonographic and retinal features of nanophthalmos. (a–c) B-scan ultrasounds showing features of nanophthalmos including short axial length, thickened sclera, and choroid (a), serous retinal detachment (b), and choroidal effusion (c). (d–f) Ultrasound biomicroscopy in a nanophthalmic eyes showing shallow anterior chamber (d), angle closure (e), and anterior rotation of the lens-iris diaphragm (f). (g) Heidelberg Spectralis OCT showing prominent choroidal and retinal folds in a small eye. (h) Zeiss Cirrus OCT showing foveoschisis and choroidal folds in a nanophthalmic eye. (i) Fundus photos in a patient with nanophthalmos and optic disc drusen, showing chorioretinal folds and crowded disc with mild vascular tortuousity.

References

    1. Elder M. J. Aetiology of severe visual impairment and blindness in microphthalmos. 1994;78(5):332–334. doi: 10.1136/bjo.78.5.332.
    1. Relhan N., Jalali S., Pehre N., Rao H. L., Manusani U., Bodduluri L. High-hyperopia database, part I: clinical characterisation including morphometric (biometric) differentiation of posterior microphthalmos from nanophthalmos. 2016;30(1):120–126. doi: 10.1038/eye.2015.206.
    1. Hoffman R. S., Vasavada A. R., Allen Q. B., et al. Cataract surgery in the small eye. 2015;41(11):2565–2575. doi: 10.1016/j.jcrs.2015.10.008.
    1. Rajendrababu S., Babu N., Sinha S., et al. A randomized controlled trial comparing outcomes of cataract surgery in nanophthalmos with and without prophylactic sclerostomy. 2017;183:125–133. doi: 10.1016/j.ajo.2017.09.008.
    1. De Bernardo M., Zeppa L., Forte R., et al. Can we use the fellow eye biometric data to predict IOL power? 2017;32(3):363–370. doi: 10.3109/08820538.2015.1096400.
    1. Auffarth G. U., Blum M., Faller U., Tetz M. R., Volcker H. E. Relative anterior microphthalmos: morphometric analysis and its implications for cataract surgery. 2000;107(8):1555–1560. doi: 10.1016/s0161-6420(00)00240-2.
    1. Khairallah M., Messaoud R., Zaouali S., Ben Yahia S., Ladjimi A., Jenzri S. Posterior segment changes associated with posterior microphthalmos. 2002;109(3):569–574. doi: 10.1016/s0161-6420(01)00996-4.
    1. Guber I., Bergin C., Perritaz S., Majo F. Correcting interdevice bias of horizontal white-to-white and sulcus-to-sulcus measures used for implantable collamer lens sizing. 2016;161:116–125 e1. doi: 10.1016/j.ajo.2015.09.037.
    1. Slavotinek A. M. Eye development genes and known syndromes. 2011;104(4):448–456. doi: 10.1016/j.ymgme.2011.09.029.
    1. Bardakjian T. M., Schneider A. The genetics of anophthalmia and microphthalmia. 2011;22(5):309–313. doi: 10.1097/icu.0b013e328349b004.
    1. Fitzpatrick D. R., van Heyningen V. Developmental eye disorders. 2005;15(3):348–353. doi: 10.1016/j.gde.2005.04.013.
    1. Warburg M. Classification of microphthalmos and coloboma. 1993;30(8):664–669. doi: 10.1136/jmg.30.8.664.
    1. Verma A. S., Fitzpatrick D. R. Anophthalmia and microphthalmia. 2007;2:p. 47. doi: 10.1186/1750-1172-2-47.
    1. Sundin O. H., Dharmaraj S., Bhutto I. A., et al. Developmental basis of nanophthalmos: MFRP is required for both prenatal ocular growth and postnatal emmetropization. 2008;29(1):1–9. doi: 10.1080/13816810701651241.
    1. Singh O. S., Simmons R. J., Brockhurst R. J., Trempe C. L. Nanophthalmos: a perspective on identification and therapy. 1982;89(9):1006–1012. doi: 10.1016/s0161-6420(82)34687-4.
    1. Altintaş A. K., Acar M. A., Yalvaç I. S., Koçak I., Nurözler A., Duman S. Autosomal recessive nanophthalmos. 1997;75(3):325–328.
    1. Khan A. O. Posterior microphthalmos versus nanophthalmos. 2008;29(4):p. 189. doi: 10.1080/13816810802258862.
    1. Wu W., Dawson D. G., Sugar A., et al. Cataract surgery in patients with nanophthalmos: results and complications. 2004;30(3):584–590. doi: 10.1016/j.jcrs.2003.07.009.
    1. Yalvac I. S., Satana B., Ozkan G., Eksioglu U., Duman S. Management of glaucoma in patients with nanophthalmos. 2008;22(6):838–843. doi: 10.1038/sj.eye.6702742.
    1. Nowilaty S. R., Khan A. O., Aldahmesh M. A., Tabbara K. F., Al-Amri A., Alkuraya F. S. Biometric and molecular characterization of clinically diagnosed posterior microphthalmos. 2013;155(2):361–372.e7. doi: 10.1016/j.ajo.2012.08.016.
    1. Said M. B., Chouchène E., Salem S. B., et al. Posterior microphthalmia and nanophthalmia in Tunisia caused by a founder c.1059_1066insC mutation of the PRSS56 gene. 2013;528(2):288–294. doi: 10.1016/j.gene.2013.06.045.
    1. Yamani A., Wood I., Sugino I., Wanner M., Zarbin M. A. Abnormal collagen fibrils in nanophthalmos: a clinical and histologic study. 1999;127(1):106–108. doi: 10.1016/s0002-9394(98)00302-x.
    1. Buys Y. M., Pavlin C. J. Retinitis pigmentosa, nanophthalmos, and optic disc drusen: a case report. 1999;106(3):619–622. doi: 10.1016/s0161-6420(99)90126-4.
    1. Neelakantan A., Venkataramakrishnan P., Rao B. S., et al. Familial nanophthalmos: management and complications. 1994;42(3):139–143.
    1. Areiter E., Neale M., Johnson S. M. Spectrum of angle closure, uveal effusion syndrome, and nanophthalmos. 2016;10(3):113–117.
    1. Othman M. I., Sullivan S. A., Skuta G. L., et al. Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11. 1998;63(5):1411–1418. doi: 10.1086/302113.
    1. Kara N., Baz O., Altinkaynak H., Altan C., Demirok A. Assessment of the anterior chamber angle in patients with nanophthalmos: an anterior segment optical coherence tomography study. 2013;38(5):563–568. doi: 10.3109/02713683.2013.774025.
    1. Mandal A. K., Das T., Gothwal V. K. Angle closure glaucoma in nanophthalmos and pigmentary retinal dystrophy: a rare syndrome. 2001;49(4):271–272.
    1. Sundin O. H., Leppert G. S., Silva E. D., et al. Extreme hyperopia is the result of null mutations in MFRP, which encodes a frizzled-related protein. 2005;102(27):9553–9558. doi: 10.1073/pnas.0501451102.
    1. Awadalla M. S., Burdon K. P., Souzeau E., et al. Mutation in TMEM98 in a large white kindred with autosomal dominant nanophthalmos linked to 17p12-q12. 2014;132(8):970–977. doi: 10.1001/jamaophthalmol.2014.946.
    1. Khorram D., Choi M., Roos B. R., et al. Novel TMEM98 mutations in pedigrees with autosomal dominant nanophthalmos. 2015;21:1017–1023.
    1. Petrukhin K., Koisti M. J., Bakall B., et al. Identification of the gene responsible for Best macular dystrophy. 1998;19(3):241–247. doi: 10.1038/915.
    1. Srinivasan S., Batterbury M., Marsh I. B., Fisher A. C., Willoughby C., Kaye S. B. Corneal topographic features in a family with nanophthalmos. 2006;25(6):750–756. doi: 10.1097/01.ico.0000220770.19402.50.
    1. Walsh M. K., Goldberg M. F. Abnormal foveal avascular zone in nanophthalmos. 2007;143(6):1067–1068. doi: 10.1016/j.ajo.2007.01.051.
    1. Crespí J., Buil J. A., Bassaganyas F., et al. A novel mutation confirms MFRP as the gene causing the syndrome of nanophthalmos–renititis pigmentosa–foveoschisis–optic disk drusen. 2008;146(2):323–328. doi: 10.1016/j.ajo.2008.04.029.
    1. Zacharias L. C., Susanna R., Sundin O., Finzi S., Susanna B. N., Takahashi W. Y. Efficacy of topical dorzolamide therapy for cystoid macular edema in a patient with MFRP-related nanophthalmos–retinitis pigmentosa–foveoschisis–optic disk drusen syndrome. 2015;9(1):61–63. doi: 10.1097/icb.0000000000000088.
    1. MacKay C. J., Shek M. S., Carr R. E., Yanuzzi L. A., Gouras P. Retinal degeneration with nanophthalmos, cystic macular degeneration, and angle closure glaucoma. A new recessive syndrome. 1987;105(3):366–371. doi: 10.1001/archopht.1987.01060030086032.
    1. Albar A. A., Nowilaty S. R., Ghazi N. G. Nanophthalmos and hemiretinal vein occlusion: a case report. 2015;29(1):89–91. doi: 10.1016/j.sjopt.2014.11.005.
    1. Demircan A., Altan C., Osmanbasoglu O. A., Celik U., Kara N., Demirok A. Subfoveal choroidal thickness measurements with enhanced depth imaging optical coherence tomography in patients with nanophthalmos. 2014;98(3):345–349. doi: 10.1136/bjophthalmol-2013-303465.
    1. Xiao H., Guo X., Zhong Y., Liu X. Retinal and choroidal changes of nanophthalmic eyes with and without secondary glaucoma. 2015;35(10):2121–2129. doi: 10.1097/iae.0000000000000564.
    1. Helvacioglu F., Kapran Z., Sencan S., Uyar M., Cam O. Optical coherence tomography of bilateral nanophthalmos with macular folds and high hyperopia. 2014;2014:3. doi: 10.1155/2014/173853.173853
    1. Chang J. S., Ng J. C., Chan V. K., Law A. K. Cataract surgery with a new fluidics control phacoemulsification system in nanophthalmic eyes. 2016;7(3):218–226. doi: 10.1159/000452158.
    1. Srinivasan S. Small eyes-big problems. 2015;41(11):2345–2346. doi: 10.1016/j.jcrs.2015.10.058.
    1. Carifi G., Safa F., Aiello F., Baumann C., Maurino V. Cataract surgery in small adult eyes. 2014;98(9):1261–1265. doi: 10.1136/bjophthalmol-2013-304579.
    1. Singh H., Wang J. C., Desjardins D. C., Baig K., Gagné S., Ahmed I. I. Refractive outcomes in nanophthalmic eyes after phacoemulsification and implantation of a high-refractive-power foldable intraocular lens. 2015;41(11):2394–2402. doi: 10.1016/j.jcrs.2015.05.033.
    1. Moradian S., Kanani A., Esfandiari H. Nanophthalmos. 2011;6(2):145–146.
    1. Martorina M. Familial nanophthalmos. 1988;11(4):357–361.
    1. Ghose S., Sachdev M. S., Kumar H. Bilateral nanophthalmos, pigmentary retinal dystrophy, and angle closure glaucoma—a new syndrome? 1985;69(8):624–628. doi: 10.1136/bjo.69.8.624.
    1. Proença H., Castanheira-Dinis A., Monteiro-Grillo M. Bilateral nanophthalmos and pigmentary retinal dystrophy–an unusual syndrome. 2006;244(9):1203–1205. doi: 10.1007/s00417-005-0230-1.
    1. Gal A., Rau I., El Matri L., et al. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease. 2011;88(3):382–390. doi: 10.1016/j.ajhg.2011.02.006.
    1. Nair K. S., Hmani-Aifa M., Ali Z., et al. Alteration of the serine protease PRSS56 causes angle-closure glaucoma in mice and posterior microphthalmia in humans and mice. 2011;43(6):579–584. doi: 10.1038/ng.813.
    1. Bhanot P., Brink M., Samos C. H., et al. A new member of the frizzled family from drosophila functions as a wingless receptor. 1996;382(6588):225–230. doi: 10.1038/382225a0.
    1. Katoh M. Molecular cloning and characterization of MFRP, a novel gene encoding a membrane-type frizzled-related protein. 2001;282(1):116–123. doi: 10.1006/bbrc.2001.4551.
    1. Mameesh M., Ganesh A., Harikrishna B., et al. Co-inheritance of the membrane frizzled-related protein ocular phenotype and glycogen storage disease type Ib. 2017;38(6):1–5. doi: 10.1080/13816810.2017.1323340.
    1. Mukhopadhyay R., Sergouniotis P. I., Mackay D. S., et al. A detailed phenotypic assessment of individuals affected by MFRP-related oculopathy. 2010;16:540–548.
    1. Mandal M. N., Vasireddy V., Jablonski M. M., et al. Spatial and temporal expression of MFRP and its interaction with CTRP5. 2006;47(12):5514–5521. doi: 10.1167/iovs.06-0449.
    1. Kameya S., Hawes N. L., Chang B., Heckenlively J. R., Naggert J. K., Nishina P. M. Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6. 2002;11(16):1879–1886. doi: 10.1093/hmg/11.16.1879.
    1. Fogerty J., Besharse J. C. 174delG mutation in mouse MFRP causes photoreceptor degeneration and RPE atrophy. 2011;52(10):7256–7266. doi: 10.1167/iovs.11-8112.
    1. Hawes N. L., Chang B., Hageman G. S., et al. Retinal degeneration 6 (rd6): a new mouse model for human retinitis punctata albescens. 2000;41(10):3149–3157.
    1. Sundin O. H. The mouse’s eye and Mfrp: not quite human. 2005;26(4):153–155. doi: 10.1080/13816810500374359.
    1. Soundararajan R., Won J., Stearns T. M., et al. Gene profiling of postnatal Mfrprd6 mutant eyes reveals differential accumulation of Prss56, visual cycle and phototransduction mRNAs. 2014;9(10) doi: 10.1371/journal.pone.0110299.e110299
    1. Collery R. F., Volberding P. J., Bostrom J. R., Link B. A., Besharse J. C. Loss of zebrafish Mfrp causes nanophthalmia, hyperopia, and accumulation of subretinal macrophages. 2016;57(15):6805–6814. doi: 10.1167/iovs.16-19593.
    1. Wang P., Yang Z., Li S., Xiao X., Guo X., Zhang Q. Evaluation of MFRP as a candidate gene for high hyperopia. 2009;15:181–186.
    1. Velez G., Tsang S. H., Tsai Y. T., et al. Gene therapy restores Mfrp and corrects axial eye length. 2017;7(1):p. 16151. doi: 10.1038/s41598-017-16275-8.
    1. Wasmann R. A., Wassink-Ruiter J. S., Sundin O. H., Morales E., Verheij J. B., Pott J. W. Novel membrane frizzled-related protein gene mutation as cause of posterior microphthalmia resulting in high hyperopia with macular folds. 2014;92(3):276–281. doi: 10.1111/aos.12105.
    1. Neri A., Leaci R., Zenteno J. C., Casubolo C., Delfini E., Macaluso C. Membrane frizzled-related protein gene-related ophthalmological syndrome: 30-month follow-up of a sporadic case and review of genotype-phenotype correlation in the literature. 2012;18:2623–2632.
    1. Ayala-Ramirez R., Graue-Wiechers F., Robredo V., Amato-Almanza M., Horta-Diez I., Zenteno J. C. A new autosomal recessive syndrome consisting of posterior microphthalmos, retinitis pigmentosa, foveoschisis, and optic disc drusen is caused by a MFRP gene mutation. 2006;12:1483–1489.
    1. Zenteno J. C., Buentello-Volante B., Quiroz-González M. A., Quiroz-Reyes M. A. Compound heterozygosity for a novel and a recurrent MFRP gene mutation in a family with the nanophthalmos-retinitis pigmentosa complex. 2009;15:1794–1798.
    1. Orr A., Dubé M. P., Zenteno J. C., et al. Mutations in a novel serine protease PRSS56 in families with nanophthalmos. 2011;17:1850–1861.
    1. Lotery A. J., Jacobson S. G., Fishman G. A., et al. Mutations in the CRB1 gene cause Leber congenital amaurosis. 2001;119(3):415–420. doi: 10.1001/archopht.119.3.415.
    1. Jacobson S. G., Cideciyan A. V., Aleman T. S., et al. Crumbs homolog 1 (CRB1) mutations result in a thick human retina with abnormal lamination. 2003;12(9):1073–1078. doi: 10.1093/hmg/ddg117.
    1. den Hollander A. I., Heckenlively J. R., van den Born L. I., et al. Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. 2001;69(1):198–203. doi: 10.1086/321263.
    1. Abouzeid H., Li Y., Maumenee I. H., Dharmaraj S., Sundin O. A G1103R mutation in CRB1 is co-inherited with high hyperopia and Leber congenital amaurosis. 2006;27(1):15–20. doi: 10.1080/13816810500481840.
    1. Paun C. C., Pijl B. J., Siemiatkowska A. M., et al. A novel crumbs homolog 1 mutation in a family with retinitis pigmentosa, nanophthalmos, and optic disc drusen. 2012;18:2447–2453.
    1. Zenteno J. C., Buentello-Volante B., Ayala-Ramirez R., Villanueva-Mendoza C. Homozygosity mapping identifies the Crumbs homologue 1 (Crb1) gene as responsible for a recessive syndrome of retinitis pigmentosa and nanophthalmos. 2011;155A(5):1001–1006. doi: 10.1002/ajmg.a.33862.
    1. Boon C. J., Klevering B. J., Leroy B. P., Hoyng C. B., Keunen J. E., den Hollander A. I. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. 2009;28(3):187–205. doi: 10.1016/j.preteyeres.2009.04.002.
    1. Toto L., Boon C. J., Di Antonio L., et al. Bestrophinopathy: a spectrum of ocular abnormalities caused by the c.614T>C mutation in the BEST1 gene. 2016;36(8):1586–1595. doi: 10.1097/iae.0000000000000950.
    1. Wittström E., Ponjavic V., Bondeson M. L., Andréasson S. Anterior segment abnormalities and angle-closure glaucoma in a family with a mutation in the BEST1 gene and Best vitelliform macular dystrophy. 2011;32(4):217–227. doi: 10.3109/13816810.2011.567884.
    1. Yardley J., Leroy B. P., Hart-Holden N., et al. Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC) 2004;45(10):3683–3689. doi: 10.1167/iovs.04-0550.
    1. Lafaut B. A., Loeys B., Leroy B. P., Spileers W., De Laey J. J., Kestelyn P. Clinical and electrophysiological findings in autosomal dominant vitreoretinochoroidopathy: report of a new pedigree. 2001;239(8):575–582. doi: 10.1007/s004170100318.
    1. Burgess R., Millar I. D., Leroy B. P., et al. Biallelic mutation of BEST1 causes a distinct retinopathy in humans. 2008;82(1):19–31. doi: 10.1016/j.ajhg.2007.08.004.
    1. Burgess R., MacLaren R. E., Davidson A. E., et al. ADVIRC is caused by distinct mutations in BEST1 that alter pre-mRNA splicing. 2009;46(9):620–625. doi: 10.1136/jmg.2008.059881.
    1. Boon C. J., van den Born L. I., Visser L., et al. Autosomal recessive bestrophinopathy: differential diagnosis and treatment options. 2013;120(4):809–820. doi: 10.1016/j.ophtha.2012.09.057.
    1. Davidson A. E., Sergouniotis P. I., Burgess-Mullan R., et al. A synonymous codon variant in two patients with autosomal recessive bestrophinopathy alters in vitro splicing of BEST1. 2010;16:2916–2922.
    1. Crowley C., Paterson R., Lamey T., et al. Autosomal recessive bestrophinopathy associated with angle-closure glaucoma. 2014;129(1):57–63. doi: 10.1007/s10633-014-9444-z.
    1. Li H., Wang J. X., Wang C. Y., et al. Localization of a novel gene for congenital nonsyndromic simple microphthalmia to chromosome 2q11-14. 2008;122(6):589–593. doi: 10.1007/s00439-007-0435-y.

Source: PubMed

3
Sottoscrivi