ApoB/ApoA-I Ratio is Associated With Faster Hemodynamic Progression of Aortic Stenosis: Results From the PROGRESSA (Metabolic Determinants of the Progression of Aortic Stenosis) Study

Lionel Tastet, Romain Capoulade, Mylène Shen, Marie-Annick Clavel, Nancy Côté, Patrick Mathieu, Marie Arsenault, Élisabeth Bédard, Alexe Tremblay, Marilie Samson, Yohan Bossé, Jean G Dumesnil, Benoit J Arsenault, Jonathan Beaudoin, Mathieu Bernier, Jean-Pierre Després, Philippe Pibarot, Lionel Tastet, Romain Capoulade, Mylène Shen, Marie-Annick Clavel, Nancy Côté, Patrick Mathieu, Marie Arsenault, Élisabeth Bédard, Alexe Tremblay, Marilie Samson, Yohan Bossé, Jean G Dumesnil, Benoit J Arsenault, Jonathan Beaudoin, Mathieu Bernier, Jean-Pierre Després, Philippe Pibarot

Abstract

Background: Previous studies reported that middle-aged patients with atherogenic lipoprotein-lipid profile exhibit faster progression of aortic valve stenosis (AS). The ratio of apolipoprotein B/apolipoprotein A-I (apoB/apoA-I) reflects the balance between atherogenic and anti-atherogenic lipoproteins. The aim of this study was to examine the association between apoB/apoA-I ratio and AS hemodynamic progression and to determine whether this association varies according to age.

Methods and results: A total of 159 patients (66±13 years, 73% men) with AS were prospectively recruited in the PROGRESSA (Metabolic Determinants of the Progression of Aortic Stenosis) study. Hemodynamic progression of AS was determined by the change in peak aortic jet velocity (Vpeak) measured by Doppler-echocardiography between baseline and 2-year follow-up. Patients in the top tertile of apoB/apoA-I ratio (≥0.62) had a faster progression rate of AS compared with those in the bottom/mid tertiles (Vpeak progression: 0.30 [0.09-0.49] versus 0.16 [0.01-0.36] m/s, P=0.02). There was a significant interaction (P=0.007) between apoB/apoA-I ratio and age. Among younger patients (ie, aged <70 years; median value of the cohort), those in the top tertile of apoB/apoA-I ratio had a 3.4-fold faster AS progression compared with those in the bottom/mid tertiles (Vpeak progression: 0.34 [0.13-0.69] versus 0.10 [-0.03-0.31] m/s, P=0.002), whereas there was no significant difference between tertiles in the subgroup of older patients (P=0.83). After comprehensive adjustment, higher apoB/apoA-I ratio was significantly associated with faster AS progression in the subset of younger patients (all, standardized β≥0.36; P≤0.01).

Conclusions: Higher apoB/apoA-I ratio is significantly associated with faster hemodynamic progression of AS in the younger patients. These findings suggest that atherogenic lipid factors may play a crucial role in the pathogenesis of AS in younger patients, but may be are less important in older patients.

Clinical trial registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01679431.

Keywords: aging; aortic valve stenosis; apolipoprotein; echocardiography.

© 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

Figures

Figure 1
Figure 1
Hemodynamic progression rate of aortic valve stenosis according to tertiles of apoB/apoA‐I ratio. Comparison of progression of Vpeak in the entire cohort (n=159) (A), in patients with age <70 years (ie, median age for the entire cohort; n=80) (B), and in patients with age ≥70 years (n=79) (C) according to top tertile of apoB/apoA‐I ratio (ie, ≥0.62) vs bottom and middle tertiles (ie, <0.62). The box shows the 25th to 75th percentiles, the median line on the box shows the median value, and the error bars the 10th and 90th percentiles; circles are outliers; the numbers of the top of the graph are median (25th percentile to 75th percentile). apoA‐I indicates apolipoprotein A‐I; apoB, apolipoprotein B; Vpeak, peak aortic jet velocity.
Figure 2
Figure 2
Comparison of the change in severity class of aortic valve stenosis according to tertiles of apoB/apoA‐I ratio and age. Baseline aortic valve stenosis severity was similar when comparing patients with higher (top tertile) vs those with lower (bottom/middle [mid] tertiles) plasma level of apoB/apoA‐I ratio, in patients aged peak, peak aortic jet velocity.
Figure 3
Figure 3
Association of higher apoB/apoA‐I ratio with the worsening of AS severity class. Risk of the worsening of AS severity class (ie, change from mild to moderate or severe defined as Vpeak>3.0 m/s, or change from moderate to severe defined as Vpeak≥4.0 m/s) after 2 years of follow‐up according to top tertile vs bottom and middle (mid) tertiles of apoB/apoA‐I ratio, in the entire cohort, the patients aged <70 years, and the patients aged ≥70 years, respectively. In the entire cohort, the logistic regression analysis was adjusted for age, sex, and baseline Vpeak. In both age groups, the analyses were adjusted for sex and baseline Vpeak. CI indicates confidence interval; OR, odd ratio; apoA‐I, apolipoprotein A‐I; apoB, apolipoprotein B; Vpeak, peak aortic jet velocity.

References

    1. Lindman BR, Clavel MA, Mathieu P, Iung B, Lancellotti P, Otto CM, Pibarot P. Calcific aortic stenosis. Nat Rev Dis Primers. 2016;2:16006.
    1. Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O'Brien KD. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 1994;90:844–853.
    1. Freeman RV, Otto CM. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation. 2005;111:3316–3326.
    1. Rajamannan NM, Evans FJ, Aikawa E, Grande‐Allen KJ, Demer LL, Heistad DD, Simmons CA, Masters KS, Mathieu P, O'Brien KD, Schoen FJ, Towler DA, Yoganathan AP, Otto CM. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the national heart and lung and blood institute aortic stenosis working group. Executive summary: calcific aortic valve disease—2011 update. Circulation. 2011;124:1783–1791.
    1. Pawade TA, Newby DE, Dweck MR. Calcification in aortic stenosis: the skeleton key. J Am Coll Cardiol. 2015;66:561–577.
    1. Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, Kitzman DW, Otto CM. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol. 1997;29:630–634.
    1. Katz R, Wong ND, Kronmal R, Takasu J, Shavelle DM, Probstfield JL, Bertoni AG, Budoff MJ, O'Brien KD. Features of the metabolic syndrome and diabetes mellitus as predictors of aortic valve calcification in the Multi‐Ethnic Study of Atherosclerosis. Circulation. 2006;113:2113–2119.
    1. Owens DS, Katz R, Takasu J, Kronmal R, Budoff MJ, O'Brien KD. Incidence and progression of aortic valve calcium in the Multi‐ethnic Study of Atherosclerosis (MESA). Am J Cardiol. 2010;105:701–708.
    1. Capoulade R, Clavel MA, Dumesnil JG, Chan KL, Teo KK, Tam JW, Côté N, Mathieu P, Després JP, Pibarot P. Impact of metabolic syndrome on progression of aortic stenosis: influence of age and statin therapy. J Am Coll Cardiol. 2012;60:216–223.
    1. Thanassoulis G, Campbell CY, Owens DS, Smith JG, Smith AV, Peloso GM, Kerr KF, Pechlivanis S, Budoff MJ, Harris TB, Malhotra R, O'Brien KD, Kamstrup PR, Nordestgaard BG, Tybjaerg‐Hansen A, Allison MA, Aspelund T, Criqui MH, Heckbert SR, Hwang SJ, Liu Y, Sjogren M, van der Pals J, Kalsch H, Muhleisen TW, Nothen MM, Cupples LA, Caslake M, Di Angelantonio E, Danesh J, Rotter JI, Sigurdsson S, Wong Q, Erbel R, Kathiresan S, Melander O, Gudnason V, O'Donnell CJ, Post WS. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368:503–512.
    1. Kamstrup PR, Tybjaerg‐Hansen A, Nordestgaard BG. Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population. J Am Coll Cardiol. 2014;63:470–477.
    1. Arsenault BJ, Boekholdt SM, Dubé MP, Rhéaume É, Wareham NJ, Khaw KT, Sandhu MS, Tardif JC. Lipoprotein(a) levels, genotype and incident aortic valve stenosis: a prospective Mendelian randomization study and replication in a case‐control cohort. Circ Cardiovasc Genet. 2014;7:304–310.
    1. Capoulade R, Mahmut A, Tastet L, Arsenault M, Bédard E, Dumesnil JG, Després JP, Larose É, Arsenault BJ, Bossé Y, Mathieu P, Pibarot P. Impact of plasma Lp‐PLA2 activity on the progression of aortic stenosis: the PROGRESSA study. JACC Cardiovasc Imaging. 2015;8:26–33.
    1. Capoulade R, Chan KL, Yeang C, Mathieu P, Bossé Y, Dumesnil JG, Tam JW, Teo KK, Mahmut A, Yang X, Witztum JL, Arsenault BJ, Després JP, Pibarot P, Tsimikas S. Oxidized phospholipids, lipoprotein(a), and progression of calcific aortic valve stenosis. J Am Coll Cardiol. 2015;66:1236–1246.
    1. Smith JG, Luk K, Schulz CA, Engert JC, Do R, Hindy G, Rukh G, Dufresne L, Almgren P, Owens DS, Harris TB, Peloso GM, Kerr KF, Wong Q, Smith AV, Budoff MJ, Rotter JI, Cupples LA, Rich S, Kathiresan S, Orho‐Melander M, Gudnason V, O'Donnell CJ, Post WS, Thanassoulis G. Association of low‐density lipoprotein cholesterol‐related genetic variants with aortic valve calcium and incident aortic stenosis. JAMA. 2014;312:1764–1771.
    1. Cowell SJ, Newby DE, Prescott RJ, Bloomfield P, Reid J, Northridge DB, Boon NA. A randomized trial of intensive lipid‐lowering therapy in calcific aortic stenosis. N Engl J Med. 2005;352:2389–2397.
    1. Rossebo AB, Pedersen TR, Boman K, Brudi P, Chambers JB, Egstrup K, Gerdts E, Gohlke‐Barwolf C, Holme I, Kesaniemi YA, Malbecq W, Nienaber CA, Ray S, Skjaerpe T, Wachtell K, Willenheimer R. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med. 2008;359:1343–1356.
    1. Chan KL, Teo K, Dumesnil JG, Ni A, Tam J. Effect of lipid lowering with rosuvastatin on progression of aortic stenosis. Results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation. 2010;121:306–314.
    1. Yilmaz MB, Guray U, Guray Y, Cihan G, Caldir V, Cay S, Kisacik HL, Korkmaz S. Lipid profile of patients with aortic stenosis might be predictive of rate of progression. Am Heart J. 2004;147:915–918.
    1. Mohty D, Pibarot P, Després JP, Cartier A, Arsenault B, Picard F, Mathieu P. Age‐related differences in the pathogenesis of calcific aortic stenosis: the potential role of resistin. Int J Cardiol. 2010;142:126–132.
    1. Tastet L, Capoulade R, Clavel MA, Larose É, Shen M, Dahou A, Arsenault M, Mathieu P, Bédard É, Dumesnil JG, Tremblay A, Bossé Y, Després JP, Pibarot P. Systolic hypertension and progression of aortic valve calcification in patients with aortic stenosis: results from the PROGRESSA study. Eur Heart J Cardiovasc Imaging. 2017;18:70–78.
    1. Panel E . Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adults treatment panel III). JAMA. 2001;285:2486–2492.
    1. Hachicha Z, Dumesnil JG, Pibarot P. Usefulness of the valvuloarterial impedance to predict adverse outcome in asymptomatic aortic stenosis. J Am Coll Cardiol. 2009;54:1003–1011.
    1. Mykkanen L, Kuusisto J, Haffner SM, Laakso M, Austin MA. LDL size and risk of coronary heart disease in elderly men and women. Arterioscler Thromb Vasc Biol. 1999;19:2742–2748.
    1. Sniderman AD, Islam S, McQueen M, Pencina M, Furberg CD, Thanassoulis G, Yusuf S. Age and cardiovascular risk attributable to apolipoprotein B, low‐density lipoprotein cholesterol or non‐high‐density lipoprotein cholesterol. J Am Heart Assoc. 2016;5:e003665 DOI: .
    1. Akat K, Kaden JJ, Schmitz F, Ewering S, Anton A, Klomfass S, Hoffmann R, Ortlepp JR. Calcium metabolism in adults with severe aortic valve stenosis and preserved renal function. Am J Cardiol. 2010;105:862–864.
    1. Hekimian G, Boutten A, Flamant M, Duval X, Dehoux M, Benessiano J, Huart V, Dupré T, Berjeb N, Tubach F, Iung B, Vahanian A, Messika‐Zeitoun D. Progression of aortic valve stenosis is associated with bone remodelling and secondary hyperparathyroidism in elderly patients–the COFRASA study. Eur Heart J. 2013;34:1915–1922.
    1. Pfister R, Michels G, Sharp SJ, Luben R, Wareham NJ, Khaw KT. Inverse association between bone mineral density and risk of aortic stenosis in men and women in EPIC‐Norfolk prospective study. Int J Cardiol. 2015;178:29–30.
    1. Sniderman AD, Jungner I, Holme I, Aastveit A, Walldius G. Errors that result from using the TC/HDL C ratio rather than the apoB/apoA‐I ratio to identify the lipoprotein‐related risk of vascular disease. J Intern Med. 2006;259:455–461.
    1. Mudd JO, Borlaug BA, Johnston PV, Kral BG, Rouf R, Blumenthal RS, Kwiterovich PO Jr. Beyond low‐density lipoprotein cholesterol: defining the role of low‐density lipoprotein heterogeneity in coronary artery disease. J Am Coll Cardiol. 2007;50:1735–1741.
    1. Frank PG, Marcel YL. Apolipoprotein A‐I: structure‐function relationships. J Lipid Res. 2000;41:853–872.
    1. O'Brien KD, Reichenbach DD, Marcovina SM, Kuusisto J, Alpers CE, Otto CM. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler Thromb Vasc Biol. 1996;16:523–532.
    1. Audet A, Côté N, Couture C, Bossé Y, Després JP, Pibarot P, Mathieu P. Amyloid substance within stenotic aortic valves promotes mineralization. Histopathology. 2012;61:610–619.
    1. O'Brien KD, Vuletic S, McDonald TO, Wolfbauer G, Lewis K, Tu AY, Marcovina S, Wight TN, Chait A, Albers JJ. Cell‐associated and extracellular phospholipid transfer protein in human coronary atherosclerosis. Circulation. 2003;108:270–274.
    1. Derbali H, Bossé Y, Côté N, Pibarot P, Audet A, Pépin A, Arsenault B, Couture C, Després JP, Mathieu P. Increased biglycan in aortic valve stenosis leads to the overexpression of phospholipid transfer protein via toll‐like receptor 2. Am J Pathol. 2010;176:2638–2645.
    1. Trapeaux J, Busseuil D, Shi Y, Nobari S, Shustik D, Mecteau M, El‐Hamamsy I, Lebel M, Mongrain R, Rhéaume E, Tardif JC. Improvement of aortic valve stenosis by ApoA‐I mimetic therapy is associated with decreased aortic root and valve remodelling in mice. Br J Pharmacol. 2013;169:1587–1599.
    1. Hung MY, Witztum JL, Tsimikas S. New therapeutic targets for calcific aortic valve stenosis: the lipoprotein(a)‐lipoprotein‐associated phospholipase A2‐oxidized phospholipid axis. J Am Coll Cardiol. 2014;63:478–480.
    1. Bouchareb R, Mahmut A, Nsaibia MJ, Boulanger M‐C, Dahou A, Lépine JL, Laflamme MH, Hadji F, Couture C, Trahan S, Pagé S, Bossé Y, Pibarot P, Scipione CA, Romagnuolo R, Koschinsky ML, Arsenault BJ, Marette A, Mathieu P. Autotaxin derived from lipoprotein(a) and valve interstitial cells promotes inflammation and mineralization of the aortic valve. Circulation. 2015;132:677–690.
    1. Nsaibia MJ, Boulanger MC, Bouchareb R, Mkannez G, Le Quang K, Hadji F, Argaud D, Dahou A, Bossé Y, Koschinsky ML, Pibarot P, Arsenault BJ, Marette A, Mathieu P. OxLDL‐derived lysophosphatidic acid promotes the progression of aortic valve stenosis through a LPAR1‐RhoA‐NF‐kappaB pathway. Cardiovasc Res. 2017;113:1351–1363.
    1. Mathieu P, Poirier P, Pibarot P, Lemieux I, Després JP. Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension. 2009;53:577–584.
    1. Kaneva AM, Potolitsyna NN, Bojko ER, Odland JO. The apolipoprotein B/apolipoprotein A‐I ratio as a potential marker of plasma atherogenicity. Dis Markers. 2015;2015:591454.
    1. Bjornheden T, Babyi A, Bondjers G, Wiklund O. Accumulation of lipoprotein fractions and subfractions in the arterial wall, determined in an in vitro perfusion system. Atherosclerosis. 1996;123:43–56.
    1. Mohty D, Pibarot P, Després JP, Côté C, Arsenault B, Cartier A, Cosnay P, Couture C, Mathieu P. Association between plasma LDL particle size, valvular accumulation of oxidized LDL, and inflammation in patients with aortic stenosis. Arterioscler Thromb Vasc Biol. 2008;28:187–193.
    1. Shetty R, Pibarot P, Audet A, Janvier R, Dagenais F, Perron J, Couture C, Voisine P, Després JP, Mathieu P. Lipid‐mediated inflammation and degeneration of bioprosthetic heart valves. Eur J Clin Invest. 2009;39:471–480.
    1. Mahjoub H, Mathieu P, Sénéchal M, Larose É, Dumesnil JG, Després JP, Pibarot P. ApoB/ApoA‐I ratio is associated with increased risk of bioprosthetic valve degeneration. J Am Coll Cardiol. 2013;61:752–761.
    1. Aronow WS, Ahn C, Kronzon I, Goldman ME. Association of coronary risk factors and use of statins with progression of mild valvular aortic stenosis in older persons. Am J Cardiol. 2001;88:693–695.
    1. Novaro GM, Tiong IY, Pearce GL, Lauer MS, Sprecher DL, Griffin BP. Effect of hydroxymethylglutaryl coenzyme a reductase inhibitors on the progression of calcific aortic stenosis. Circulation. 2001;104:2205–2209.
    1. Moura LM, Ramos SF, Zamorano JL, Barros IM, Azevedo LF, Rocha‐Gonçalves F, Rajamannan NM. Rosuvastatin affecting aortic valve endothelium to slow the progression of aortic stenosis. J Am Coll Cardiol. 2007;49:554–561.
    1. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case‐control study. Lancet. 2004;364:937–952.
    1. van der Steeg WA, Boekholdt SM, Stein EA, El‐Harchaoui K, Stroes ES, Sandhu MS, Wareham NJ, Jukema JW, Luben R, Zwinderman AH, Kastelein JJ, Khaw KT. Role of the apolipoprotein B‐apolipoprotein A‐I ratio in cardiovascular risk assessment: a case‐control analysis in EPIC‐Norfolk. Ann Intern Med. 2007;146:640–648.
    1. Glymour MM, Weuve J, Berkman LF, Kawachi I, Robins JM. When is baseline adjustment useful in analyses of change? An example with education and cognitive change. Am J Epidemiol. 2005;162:267–278.

Source: PubMed

3
Sottoscrivi