De novo rearrangements found in 2% of index patients with spinal muscular atrophy: mutational mechanisms, parental origin, mutation rate, and implications for genetic counseling

B Wirth, T Schmidt, E Hahnen, S Rudnik-Schöneborn, M Krawczak, B Müller-Myhsok, J Schönling, K Zerres, B Wirth, T Schmidt, E Hahnen, S Rudnik-Schöneborn, M Krawczak, B Müller-Myhsok, J Schönling, K Zerres

Abstract

Spinal muscular atrophy (SMA) is a relatively common autosomal recessive neuromuscular disorder. We have identified de novo rearrangements in 7 (approximately 2%) index patients from 340 informative SMA families. In each, the rearrangements resulted in the absence of the telomeric copy of the survival motor neuron (SMN) gene (telSMN), in two cases accompanied by the loss of the neuronal apoptosis-inhibitory protein gene . Haplotype analysis revealed unequal recombination in four cases, with loss of markers Ag1-CA and C212, which are near the 5' ends of the SMN genes. In one case, an interchromosomal rearrangement involving both the SMN genes and a regrouping of Ag1-CA and C212 alleles must have occurred, suggesting either interchromosomal gene conversion or double recombination. In two cases, no such rearrangement was observed, but loss of telSMN plus Ag1-CA and C212 alleles in one case suggested intrachromosomal deletion or gene conversion. In six of the seven cases, the de novo rearrangement had occurred during paternal meiosis. Direct detection of de novo SMA mutations by molecular genetic means has allowed us to estimate for the first time the mutation rate for a recessive disorder in humans. The sex-averaged rate of 1.1 x 10(-4), arrived at in a proband-based approach, compares well with the rate of 0.9 x 10(-4) expected under a mutation-selection equilibrium for SMA. These findings have important implications for genetic counseling and prenatal diagnosis in that they emphasize the relevance of indirect genotype analysis in combination with direct SMN-gene deletion testing in SMA families.

References

    1. Hum Mol Genet. 1993 Dec;2(12):2031-5
    1. Nature. 1990 Apr 5;344(6266):540-1
    1. Genomics. 1994 Mar 1;20(1):84-93
    1. Genomics. 1994 May 15;21(2):394-402
    1. Science. 1994 Oct 7;266(5182):107-9
    1. Am J Hum Genet. 1994 Dec;55(6):1218-29
    1. Cell. 1995 Jan 13;80(1):155-65
    1. Cell. 1995 Jan 13;80(1):167-78
    1. Arch Neurol. 1995 May;52(5):518-23
    1. Prenat Diagn. 1995 Jan;15(1):93-4
    1. Hum Mol Genet. 1995 Apr;4(4):631-4
    1. Prenat Diagn. 1995 May;15(5):407-17
    1. Am J Hum Genet. 1995 Oct;57(4):805-8
    1. Nat Genet. 1995 Nov;11(3):335-7
    1. Hum Mol Genet. 1995 Aug;4(8):1273-84
    1. Hum Mol Genet. 1995 Oct;4(10):1927-33
    1. Am J Hum Genet. 1996 Mar;58(3):472-6
    1. Nat Genet. 1996 May;13(1):48-53
    1. Hum Genet. 1996 Jul;98(1):119-21
    1. Hum Genet. 1996 Jul;98(1):122-3
    1. Hum Mutat. 1996;7(3):198-201
    1. J Med Genet. 1989 Sep;26(9):546-52
    1. Am J Hum Genet. 1997 Jul;61(1):40-50
    1. Nature. 1990 Apr 19;344(6268):767-8
    1. Nature. 1990 Jun 28;345(6278):823-5
    1. Lancet. 1990 Aug 4;336(8710):271-3
    1. Genomics. 1991 Nov;11(3):778-9
    1. Hum Mol Genet. 1996 Jan;5(1):103-6
    1. Am J Hum Genet. 1996 Oct;59(4):834-8
    1. Genomics. 1996 Mar 15;32(3):479-82
    1. Hum Mol Genet. 1996 Mar;5(3):359-65
    1. Am J Hum Genet. 1996 Nov;59(5):1057-65
    1. Am J Hum Genet. 1996 Nov;59(5):1163-5
    1. Hum Mol Genet. 1996 Nov;5(11):1727-32
    1. Hum Mol Genet. 1996 Dec;5(12):1971-6
    1. Am J Hum Genet. 1997 Jan;60(1):72-9
    1. Ann Neurol. 1997 Feb;41(2):230-7
    1. J Med Genet. 1997 Jan;34(1):86-7
    1. Hum Mol Genet. 1997 Mar;6(3):497-500
    1. Am J Hum Genet. 1997 Jun;60(6):1411-22
    1. Am J Hum Genet. 1997 Jul;61(1):9-15
    1. Science. 1994 Jun 3;264(5164):1474-7

Source: PubMed

3
Sottoscrivi