Targeting Pro-Oxidant Iron with Deferoxamine as a Treatment for Ischemic Stroke: Safety and Optimal Dose Selection in a Randomized Clinical Trial

Mònica Millán, Núria DeGregorio-Rocasolano, Natàlia Pérez de la Ossa, Sílvia Reverté, Joan Costa, Pilar Giner, Yolanda Silva, Tomás Sobrino, Manuel Rodríguez-Yáñez, Florentino Nombela, Francisco Campos, Joaquín Serena, José Vivancos, Octavi Martí-Sistac, Jordi Cortés, Antoni Dávalos, Teresa Gasull, Mònica Millán, Núria DeGregorio-Rocasolano, Natàlia Pérez de la Ossa, Sílvia Reverté, Joan Costa, Pilar Giner, Yolanda Silva, Tomás Sobrino, Manuel Rodríguez-Yáñez, Florentino Nombela, Francisco Campos, Joaquín Serena, José Vivancos, Octavi Martí-Sistac, Jordi Cortés, Antoni Dávalos, Teresa Gasull

Abstract

A role of iron as a target to prevent stroke-induced neurodegeneration has been recently revisited due to new evidence showing that ferroptosis inhibitors are protective in experimental ischemic stroke and might be therapeutic in other neurodegenerative brain pathologies. Ferroptosis is a new form of programmed cell death attributed to an overwhelming lipidic peroxidation due to excessive free iron and reactive oxygen species (ROS). This study aims to evaluate the safety and tolerability and to explore the therapeutic efficacy of the iron chelator and antioxidant deferoxamine mesylate (DFO) in ischemic stroke patients. Administration of placebo or a single DFO bolus followed by a 72 h continuous infusion of three escalating doses was initiated during the tPA infusion, and the impact on blood transferrin iron was determined. Primary endpoint was safety and tolerability, and secondary endpoint was good clinical outcome (clinicalTrials.gov NCT00777140). DFO was found safe as adverse effects were not different between placebo and DFO arms. DFO (40-60 mg/Kg/day) reduced the iron saturation of blood transferrin. A trend to efficacy was observed in patients with moderate-severe ischemic stroke (NIHSS > 7) treated with DFO 40-60 mg/Kg/day. A good outcome was observed at day 90 in 31% of placebo vs. 50-58% of the 40-60 mg/Kg/day DFO-treated patients.

Keywords: antioxidant; deferoxamine; ferroptosis; iron; neuroprotection; outcome.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this paper.

Figures

Figure 1
Figure 1
Inclusion and exclusion criteria and CONSORT flow diagram of the three-dose tier sub-studies (DTS). In each DTS early termination cases due to mortality, discontinuation due to serious adverse events (SAE) possibly related to treatment, and patients excluded are indicated.
Figure 2
Figure 2
Deferoxamine (DFO) reduces TSAT time- and dose-dependently. (A) Time-course of serum DFO levels along the infusion in AIS patients treated with a 10 mg/Kg bolus of DFO IV followed by a 72 h continuous IV infusion of DFO in escalating dose tiers of 20, 40, or 60 mg/Kg/day (blood DFO levels at time = 0 of infusion in this graph are the result of the initial previous 10 mg/Kg bolus of DFO IV). Mean ± SD are shown; no significant effects were found (repeated measures ANOVA). (B) U-PAGE/WB depicting the bands of the iron-devoid form of human transferrin standard (Std) (apotransferrin, ATf) and human diferric transferrin (diFe-Tf) standard (holotransferrin, HTf). The iron load of transferrin determines the electrophoretic mobility of the different Tf forms in these urea gels. Arrows indicate the different electrophoretic pattern of ATf, the two monoferric forms of transferrin (mFe-Tf), and the diferric transferrin (diFe-Tf) form in serum samples of stroke patients. Placebo and DFO depict bands of transferrin of two representative patients (one of the placebo group and one of the DFO 60 group) before the onset of treatment (0), and 24 and 72 h after administration. In each lane, optical density of the bands allow calculation of the % TSAT for a given patient at a given time point using the formula: TSAT (%) = (0.5 *mFe·Tf + diFe·Tf)*100/(ATf + mFe·Tf + diFe·Tf). (CF) % TSAT before the onset of treatment (0 h), and 24 and 72 h after administration of placebo (C), 20 mg/Kg/day DFO (D), 40 mg/Kg/day DFO (E), or 60 mg/Kg/day DFO (F). Values are presented as mean ± SD. * p ≤ 0.05, ** p ≤ 0.005 (repeated measures one-way ANOVA plus the post-hoc Benjamini–Krieger–Yekutieli test).
Figure 3
Figure 3
Exploratory analysis to examine whether the TSAT-modifier deferoxamine (DFO) doses favors a good outcome. (A) Median and quartiles of baseline NIHSS in a subpopulation of the TANDEM-1 study with NIHSS at admission > 7. Baseline NIHSS were found balanced between the four treatment groups when considering this patient subpopulation (NIHSS > 7) (p = 0.24, one-way ANOVA). (B) In this subpopulation (NIHSS > 7) we calculated the percentage of neurological improvement with the formula: % reduction of NIHSS at 90 days = ((NIHSS at admission-NIHSS at a given time)*100/NIHSS at admission). As DFO 40 and DFO 60, but not DFO 20, reduce TSAT, these two groups were pooled and compared to the placebo group. We observed that half of the patients in the 40 + 60 DFO group showed a 100% reduction of their initial neurological impairment, in contrast to those in the placebo group (p = 0.0546, Mann–Whitney U test). (C) Graph depicting the proportion of AIS patients showing good functional outcome (in black) in the placebo and DFO groups. DFO dose tiers of 40 and 60 mg/Kg/day have higher proportion of AIS classified as good outcome patients (mRS ≤ 2) at 7 and 90 days. Values are presented as median and quartiles and compared with one-way ANOVA (A) or Mann–Whitney U test (B).

References

    1. Yang W., Liu X., Song C., Ji S., Yang J., Liu Y., You J., Zhang J., Huang S., Cheng W., et al. Structure-activity relationship studies of phenothiazine derivatives as a new class of ferroptosis inhibitors together with the therapeutic effect in an ischemic stroke model. Eur. J. Med. Chem. 2021;209:112842. doi: 10.1016/j.ejmech.2020.112842.
    1. Magtanong L., Dixon S.J. Ferroptosis and brain injury. Dev. Neurosci. 2018;40:382–395. doi: 10.1159/000496922.
    1. DeGregorio-Rocasolano N., Martí-Sistac O., Gasull T. Deciphering the iron side of stroke: Neurodegeneration at the crossroads between iron dyshomeostasis, excitotoxicity, and ferroptosis. Front. Neurosci. 2019;13:85. doi: 10.3389/fnins.2019.00085.
    1. Abdul Y., Li W., Ward R., Abdelsaid M., Hafez S., Dong G., Jamil S., Wolf V., Johnson M.H., Fagan S.C., et al. Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: Role of endothelial ferroptosis. Transl. Stroke Res. 2020;12:615–630. doi: 10.1007/s12975-020-00844-7.
    1. Lu J., Xu F., Lu H. LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci. 2020;260:118305. doi: 10.1016/j.lfs.2020.118305.
    1. Lan B., Ge J., Cheng S., Zheng X., Liao J., He C., Rao Z.-Q., Wang G.-Z. Extract of Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acute cerebral ischemia in rats. J. Integr. Med. 2020;18:344–350. doi: 10.1016/j.joim.2020.01.008.
    1. Geng Z., Guo Z., Guo R., Ye R., Zhu W., Yan B. Ferroptosis and traumatic brain injury. Brain Res. Bull. 2021;172:212–219. doi: 10.1016/j.brainresbull.2021.04.023.
    1. Tan Q., Fang Y., Gu Q. Mechanisms of Modulation of Ferroptosis and Its, Role in Central, Nervous System, Diseases. Front. Pharmacol. 2021;12:657033. doi: 10.3389/fphar.2021.657033.
    1. Mehta S.H., Webb R.C., Ergul A., Tawfik A., Dorrance A.M. Neuroprotection by tempol in a model of iron-induced oxidative stress in acute ischemic stroke. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;286:R283–R288. doi: 10.1152/ajpregu.00446.2002.
    1. Wu J., Hua Y., Keep R.F., Nakamura T., Hoff J.T., Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34:2964–2969. doi: 10.1161/01.STR.0000103140.52838.45.
    1. García-Yébenes I., García-Culebras A., Peña-Martínez C., Fernández-López D., Díaz-Guzmán J., Negredo P., Avendaño C., Castellanos M., Gasull T., Dávalos A., et al. Iron overload exacerbates the risk of hemorrhagic transformation after tPA (tissue-type plasminogen activator) administration in thromboembolic stroke mice. Stroke. 2018;49:2163–2172. doi: 10.1161/STROKEAHA.118.021540.
    1. DeGregorio-Rocasolano N., Martí-Sistac O., Ponce J., Castelló-Ruiz M., Millán M., Guirao V., García-Yébenes I., Salom J.B., Ramos-Cabrer P., Alborch E., et al. Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage. Redox Biol. 2018;15:143–158. doi: 10.1016/j.redox.2017.11.026.
    1. Castellanos M., Puig N., Carbonell T., Castillo J., Martinez J.M., Rama R., Davalos A. Iron intake increases infarct volume after permanent middle cerebral artery occlusion in rats. Brain Res. 2002;952:1–6. doi: 10.1016/S0006-8993(02)03179-7.
    1. Nakamura T., Keep R.F., Hua Y., Schallert T., Hoff J.T., Xi G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J. Neurosurg. 2004;100:672–678. doi: 10.3171/jns.2004.100.4.0672.
    1. Mehdiratta M., Kumar S., Hackney D., Schlaug G., Selim M. Association between serum ferritin level and perihematoma edema volume in patients with spontaneous intracerebral hemorrhage. Stroke. 2008;39:1165–1170. doi: 10.1161/STROKEAHA.107.501213.
    1. De la Ossa N.P., Sobrino T., Silva Y., Blanco M., Millan M., Gomis M., Agulla J., Araya P., Reverté-Villarroya S., Serena J., et al. Iron-related brain damage in patients with intracerebral hemorrhage. Stroke. 2010;41:810–813. doi: 10.1161/STROKEAHA.109.570168.
    1. Dávalos A., Castillo J., Marrugat J., Fernandez-Real J.M., Armengou A., Cacabelos P., Rama R. Body iron stores and early neurologic deterioration in acute cerebral infarction. Neurology. 2000;54:1568–1574. doi: 10.1212/WNL.54.8.1568.
    1. Millan M., Sobrino T., Castellanos M., Nombela F., Arenillas J.F., Riva E., Cristobo I., García M.M., Vivancos J., Serena J., et al. Increased body iron stores are associated with poor outcome after thrombolytic treatment in acute stroke. Stroke. 2007;38:90–95. doi: 10.1161/01.STR.0000251798.25803.e0.
    1. Ghosh K., Ghosh K. Iron chelators or therapeutic modulators of iron overload: Are we anywhere near ideal one? Indian J. Med. Res. 2018;148:369–372. doi: 10.4103/ijmr.IJMR_2001_17.
    1. Hanson L.R., Roeytenberg A., Martinez P.M., Coppes V.G., Sweet D.C., Rao R.J., Marti D.L., Hoekman J.D., Matthews R.B., Frey W.H., et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J. Pharmacol. Exp. Ther. 2009;330:679–686. doi: 10.1124/jpet.108.149807.
    1. Xing Y., Hua Y., Keep R., Xi G. Effects of deferoxamine on brain injury after transient focal cerebral ischemia in rats with hyperglycemia. Brain Res. 2009;1291:113–121. doi: 10.1016/j.brainres.2009.07.032.
    1. Cui H.J., He H.Y., Yang A.L., Zhou H.J., Wang C., Luo J.K., Lin Y., Tang T. Efficacy of deferoxamine in animal models of intracerebral hemorrhage: A systematic review and stratified meta-analysis. PLoS ONE. 2015;10:e0127256. doi: 10.1371/journal.pone.0127256.
    1. Guo X., Qi X., Li H., Duan Z., Wei Y., Zhang F., Tian M., Ma L., You C. Deferoxamine alleviates iron overload and brain injury in a rat model of brainstem hemorrhage. World Neurosurg. 2019;128:e895–e904. doi: 10.1016/j.wneu.2019.05.024.
    1. Im D.S., Jeon J.W., Lee J.S., Won S.J., Cho S.I., Lee Y.B., Gwag B.J. Role of the NMDA receptor and iron on free radical production and brain damage following transient middle cerebral artery occlusion. Brain Res. 2012;1455:114–123. doi: 10.1016/j.brainres.2012.03.025.
    1. Selim M., Yeatts S., Goldstein J.N., Gomes J., Greenberg S., Morgenstern L.B., Schlaug G., Torbey M., Waldman B., Xi G., et al. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke. 2011;42:3067–3074. doi: 10.1161/STROKEAHA.111.617589.
    1. Summers M.R., Jacobs A., Tudway D., Perera P., Ricketss C. Studies in desferrioxamine and ferrioxamine metabolism in normal and iron-loaded subjects. Br. J. Haematol. 1979;42:547–555. doi: 10.1111/j.1365-2141.1979.tb01167.x.
    1. Menéndez-Fraga P., Blanco-González E., Sanz-Medel A., Cannata-Andía J.B. Micellar versus reversed phase liquid chromatography for the determination of desferrioxamine and its chelates with aluminium and iron in uremic serum. Talanta. 1997;45:25–33. doi: 10.1016/S0039-9140(97)00097-0.
    1. Larrue V., von Kummer R., Müller A., Bluhmki E. Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator. Stroke. 2001;32:438–441. doi: 10.1161/01.STR.32.2.438.
    1. Wahlgren N., Ahmed N., Dávalos A., Ford G.A., Grond M., Hacke W., Hennerici M.G., Kaste M., Kuelkens S., Larrue V., et al. Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): An observational study. Lancet. 2007;369:275–282. doi: 10.1016/S0140-6736(07)60149-4.
    1. Adams P.C., Reboussin D.M., Barton J.C., McLaren C.E., Eckfeldt J.H., McLaren G.D., Dawkins F.W., Acton R.T., Harris E.L., Gordeuk V.R., et al. Hemochromatosis and iron-overload screening in a racially diverse population. N. Engl. J. Med. 2005;352:1769–1778. doi: 10.1056/NEJMoa041534.
    1. Karuppagounder S.S., Alin L., Chen Y., Brand D., Bourassa M.W., Dietrich K., Wilkinson C.M., Nadeau C.A., Kumar A., Perry S., et al. N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with PGE 2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann. Neurol. 2018;84:854–872. doi: 10.1002/ana.25356.
    1. Chen B., Chen Z., Liu M., Gao X., Cheng Y., Wei Y., Wu Z.B., Cui D., Shang H. Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects. Brain Res. Bull. 2019;153:122–132. doi: 10.1016/j.brainresbull.2019.08.013.
    1. Tuo Q., Lei P., Jackman K.-A., Li X., Xiong H., Li X., Liuyang Z.-Y., Roisman L., Zhang S.-T., Ayton S., et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol. Psychiatry. 2017;22:1520–1530. doi: 10.1038/mp.2017.171.
    1. Palmer C., Roberts R., Bero C. Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke. 1994;25:1039–1045. doi: 10.1161/01.STR.25.5.1039.
    1. Freret T., Valable S., Chazalviel L., Saulnier R., Mackenzie E.T., Petit E., Bernaudin M., Boulouard M., Schumann-Bard P. Delayed administration of deferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat. Eur. J. Neurosci. 2006;23:1757–1765. doi: 10.1111/j.1460-9568.2006.04699.x.
    1. Li Y.X., Ding S.J., Xiao L., Guo W., Zhan Q. Desferoxamine preconditioning protects against cerebral ischemia in rats by inducing expressions of hypoxia inducible factor 1α and erythropoietin. Neurosci. Bull. 2008;24:89–95. doi: 10.1007/s12264-008-0089-3.
    1. Zhao Y., Rempe D.A. Prophylactic neuroprotection against stroke: Low-dose, prolonged treatment with deferoxamine or deferasirox establishes prolonged neuroprotection independent of HIF-1 function. J. Cereb. Blood Flow Metab. 2011;31:1412–1423. doi: 10.1038/jcbfm.2010.230.
    1. Sakamoto K., Suzuki T., Takahashi K., Koguchi T., Hirayama T., Mori A., Nakahara T., Nagasawa H., Ishii K. Iron-chelating agents attenuate NMDA-Induced neuronal injury via reduction of oxidative stress in the rat retina. Exp. Eye Res. 2018;171:30–36. doi: 10.1016/j.exer.2018.03.008.
    1. Tian Y., He Y., Song W., Zhang E., Xia X. Neuroprotective effect of deferoxamine on N-methyl-d-aspartate-induced excitotoxicity in RGC-5 cells. Acta Biochim. Biophys. Sin. 2017;49:827–834. doi: 10.1093/abbs/gmx082.
    1. Aaseth J., Skaug M.A., Cao Y., Andersen O. Chelation in metal intoxication-Principles and paradigms. J. Trace Elem. Med. Biol. 2015;31:260–266. doi: 10.1016/j.jtemb.2014.10.001.
    1. Allain P., Mauras Y., Chaleil D., Simon P., Ang K., Cam G., Le Mignon L., Simon M. Pharmacokinetics and renal elimination of desferrioxamine and ferrioxamine in healthy subjects and patients with haemochromatosis. Br. J. Clin. Pharmacol. 1987;24:207–212. doi: 10.1111/j.1365-2125.1987.tb03163.x.
    1. Lee P., Mohammed N., Marshall L., Abeysinghe R.D., Hider R.C., Porter J.B., Singh S. Intravenous infusion pharmacokinetics of desferrioxamine in thalassaemic patients. Drug Metab. Dispos. 1993;21:640–644.
    1. Selim M., Foster L.D., Moy C.S., Xi G., Hill M.D., Morgenstern L.B., Greenberg S.M., James M.L., Singh V., Clark W.M., et al. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): A multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 2019;18:428–438. doi: 10.1016/S1474-4422(19)30069-9.
    1. Wang Y., Liu Z., Lin T.M., Chanana S., Xiong M.P. Nanogel-DFO conjugates as a model to investigate pharmacokinetics, biodistribution, and iron chelation in vivo. Int. J. Pharm. 2018;538:79–86. doi: 10.1016/j.ijpharm.2018.01.004.
    1. Abergel R.J., Raymond K.N. Terephthalamide-containing ligands: Fast removal of iron from transferrin. J Biol. Inorg. Chem. 2008;13:229–240. doi: 10.1007/s00775-007-0314-y.
    1. Porter J.B., Abeysinghe R.D., Marshall L., Hider R.C., Singh S. Kinetics of removal and reappearance of non-transferrin-bound plasma iron with deferoxamine therapy. Blood. 1996;88:705–713. doi: 10.1182/blood.V88.2.705.bloodjournal882705.
    1. Porter J.B., Rafique R., Srichairatanakool S., Davis B.A., Shah F.T., Hair T., Evans P. Recent insights into interactions of deferoxamine with cellular and plasma iron pools: Implications for clinical use. Ann. N. Y. Acad. Sci. 2005;1054:155–168. doi: 10.1196/annals.1345.018.
    1. Bajbouj K., Shafarin J., Hamad M. High-dose deferoxamine treatment disrupts intracellular iron homeostasis reduces growth and induces apoptosis in metastatic and nonmetastatic breast cancer cell lines. Technol. Cancer Res. Treat. 2018;17:1533033818764470. doi: 10.1177/1533033818764470.
    1. Worwood M., May A.M., Bain B.J. Dacie and Lewis Practical Haematology. 20th ed. Elsevier; Amsterdam, The Netherlands: 2017. Iron deficiency anaemia and iron overload; pp. 165–186.
    1. Yeatts S.D., Palesch Y.Y., Moy C.S., Selim M. High dose deferoxamine in intracerebral hemorrhage (Hi-Def) trial: Rationale, design, and methods. Neurocrit. Care. 2013;19:257–266. doi: 10.1007/s12028-013-9861-y.
    1. Xu T., Zhang X., Liu Y., Wang H., Luo J., Luo Y., An P. Effects of dietary polyphenol supplementation on iron status and erythropoiesis: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2021;114:780–793. doi: 10.1093/ajcn/nqab068.
    1. Yu Y., Zhao W., Zhu C., Kong Z., Xu Y., Liu G., Gao X. The clinical effect of deferoxamine mesylate on edema after intracerebral hemorrhage. PLoS ONE. 2015;10:e0122371. doi: 10.1371/journal.pone.0122371.
    1. Byrappa V., Lamperti M., Ruzhyla A., Killian A., John S., St Lee T. Acute ischemic stroke & emergency mechanical thrombectomy: The effect of type of anesthesia on early outcome. Clin. Neurol. Neurosurg. 2021;202:106494. doi: 10.1016/j.clineuro.2021.106494.
    1. Gulati A., Agrawal N., Vibha D., Misra U.K., Paul B., Jain D., Pandian J., Borgohain R. Safety and Efficacy of Sovateltide (IRL-1620) in a Multicenter Randomized Controlled Clinical Trial in Patients with Acute Cerebral Ischemic Stroke. CNS Drugs. 2021;35:85–104. doi: 10.1007/s40263-020-00783-9.

Source: PubMed

3
Sottoscrivi